是时候准备春招和实习了。
节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。
针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。
总结链接如下:
喜欢本文记得收藏、关注、点赞。
星球小伙伴太给力了,将实习碰到的20个DeepSeek面试题进行了总结:
- 请简述 DeepSeek-V3 模型总体架构和主要创新点。
- MLA技术的核心原理是什么?它如何通过低秩压缩降低 KV 缓存需求?
- DeepSeek-V3 中的 DeepSeekMoE 模块采用了什么方法实现专家模型的路由?
- 多 token 预测(MTP)策略在训练中起到了哪些作用?
- DeepSeek-V3 如何利用 FP8 混合精度训练框架提高训练效率?
- 请解释 DualPipe 流水线并行算法的基本思路?
- 在跨节点专家并行训练中,通信瓶颈是常见问题。DeepSeek-V3 针对这一问题采取了哪些优化措施?
- DeepSeek-V3 采用 YaRN 方法实现长上下文扩展,请说明扩展上下文从 4K 到 128K 的过程及其对模型性能的意义。
- 请详细说明 DeepSeek-V3 的训练成本计算方法,包括预训练、上下文扩展和后训练各阶段所耗的 GPU 小时和成本估算。
- DeepSeek-R1 与 DeepSeek-V3 的关系是什么?
- 请描述 DeepSeek-R1-Zero 模型采用纯强化学习(RL)训练的流程,重点解释 GRPO 算法在其中的作用。
- 在 DeepSeek-R1 的训练中,模型如何自发分配更多思考时间来优化推理?
- 请解释冷启动数据在 DeepSeek-R1 后训练中的作用,如何利用 SFT 与 RL 相结合来提升推理能力?
- 针对 DeepSeek-R1 输出中存在的可读性和语言混杂问题,其引入“语言一致性奖励”具体是如何设计和实施的?
- 专家模型(Mixture-of-Experts)方法在大模型训练中的优势是什么?DeepSeek 如何通过细粒度专家设计降低激活参数和计算成本?
- 请讨论如何通过蒸馏方法将大模型的推理能力传递给较小模型,在 DeepSeek-R1 的实践中有哪些关键技术点和注意事项?
- 组相对策略优化(GRPO)与传统的 PPO 等强化学习方法相比,有哪些创新和优势?
- 在面对数学、编程、逻辑推理等多领域任务时,DeepSeek 如何构造训练数据并设计相应的训练策略以提升模型泛化能力?
- 请讨论自监督学习与强化学习在 DeepSeek 后训练阶段的结合方式,这种组合如何进一步释放模型推理潜能?
- 从开源角度看,DeepSeek 选择公开其技术报告和模型权重,对行业竞争格局及大规模模型算法发展带来了哪些启示和挑战?