20个 DeepSeek 高频面试题总结

是时候准备春招和实习了。

节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。

总结链接如下:

《大模型面试宝典》(2025版) 发布!

喜欢本文记得收藏、关注、点赞。

在这里插入图片描述


星球小伙伴太给力了,将实习碰到的20个DeepSeek面试题进行了总结:

  1. 请简述 DeepSeek-V3 模型总体架构和主要创新点。
  2. MLA技术的核心原理是什么?它如何通过低秩压缩降低 KV 缓存需求?
  3. DeepSeek-V3 中的 DeepSeekMoE 模块采用了什么方法实现专家模型的路由?
  4. 多 token 预测(MTP)策略在训练中起到了哪些作用?
  5. DeepSeek-V3 如何利用 FP8 混合精度训练框架提高训练效率?
  6. 请解释 DualPipe 流水线并行算法的基本思路?
  7. 在跨节点专家并行训练中,通信瓶颈是常见问题。DeepSeek-V3 针对这一问题采取了哪些优化措施?
  8. DeepSeek-V3 采用 YaRN 方法实现长上下文扩展,请说明扩展上下文从 4K 到 128K 的过程及其对模型性能的意义。
  9. 请详细说明 DeepSeek-V3 的训练成本计算方法,包括预训练、上下文扩展和后训练各阶段所耗的 GPU 小时和成本估算。
  10. DeepSeek-R1 与 DeepSeek-V3 的关系是什么?
  11. 请描述 DeepSeek-R1-Zero 模型采用纯强化学习(RL)训练的流程,重点解释 GRPO 算法在其中的作用。
  12. 在 DeepSeek-R1 的训练中,模型如何自发分配更多思考时间来优化推理?
  13. 请解释冷启动数据在 DeepSeek-R1 后训练中的作用,如何利用 SFT 与 RL 相结合来提升推理能力?
  14. 针对 DeepSeek-R1 输出中存在的可读性和语言混杂问题,其引入“语言一致性奖励”具体是如何设计和实施的?
  15. 专家模型(Mixture-of-Experts)方法在大模型训练中的优势是什么?DeepSeek 如何通过细粒度专家设计降低激活参数和计算成本?
  16. 请讨论如何通过蒸馏方法将大模型的推理能力传递给较小模型,在 DeepSeek-R1 的实践中有哪些关键技术点和注意事项?
  17. 组相对策略优化(GRPO)与传统的 PPO 等强化学习方法相比,有哪些创新和优势?
  18. 在面对数学、编程、逻辑推理等多领域任务时,DeepSeek 如何构造训练数据并设计相应的训练策略以提升模型泛化能力?
  19. 请讨论自监督学习与强化学习在 DeepSeek 后训练阶段的结合方式,这种组合如何进一步释放模型推理潜能?
  20. 从开源角度看,DeepSeek 选择公开其技术报告和模型权重,对行业竞争格局及大规模模型算法发展带来了哪些启示和挑战?
智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值