评价指标 | ROC曲线和AUC面积

ROC曲线是评估分类器性能的工具,其纵轴是真正例率(TPR),横轴是假正例率(FPR)。AUC面积表示模型预测正例优于负例的概率,是判断模型好坏的一个指标。当ROC曲线交叉时,比较AUC面积可以帮助确定模型优劣。
摘要由CSDN通过智能技术生成

评价指标 | ROC曲线和AUC面积理解

ROC全称是“受试者工作特征”(Receiver OperatingCharacteristic)曲线。

ROC曲线的纵轴是“真正例率”(True Positive Rate, 简称TPR),横轴是“假正例率”(False Positive Rate,简称FPR)

如果两条ROC曲线没有相交,我们可以根据哪条曲线最靠近左上角哪条曲线代表的学习器性能就最好。但是,实际任务中,情况很复杂,如果两条ROC曲线发生了交叉,则很难一般性地断言谁优谁劣。在很多实际应用中,我们往往希望把学习器性能分出个高低来。在此引入AUC面积。

AUC是衡量二分类模型优劣的一种评价指标,表示预测的正例排在负例前面的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值