对于Jacobian矩阵的理解GVINS

理解GVINS中的jacobians设置

在GNSS处理的阶段 由于涉及了误差函数residual,同时,我们也了解到jacobians矩阵是误差函数对于待优化的变量求导后得到的矩阵
可以理解为:误差函数对于位姿、待估计优化变量得到的雅可比矩阵,决定着下一步骤最优迭代估计的方向。请添加图片描述

所以在GVINS的个人jacobians矩阵推倒的理解如下:
请添加图片描述
上面的图片为根据GNSS的pseudorange待估计的(待优化的变量)因为是伪距和doppler共同估计 所以 此时的待估计优化参数有位置、速度、钟差、钟漂等
下图是对于估计的伪距的计算,最终估计的伪距通过psr_estimated表示。
请添加图片描述残差是通过下面这行给出的:
请添加图片描述通过对residual函数的每个待优化的变量分别求导,得出jacobians的矩阵。

矩阵的设置如下:请添加图片描述J_Pi矩阵设置成为<2,7>表示residual为2维度,而7表示待估计的优化变量是7维度。
通过:J_Pi.topLeftCorner<1, 3>() = -rcv2sat_unit.transpose() * R_ecef_local * pr_weight * ratio;表示:将Jacobians矩阵的左上角<1,3>1行3列的元素填满为rcv2sat_unit.transpose() * R_ecef_local * pr_weight * ratio。
rcv2sat_unit.transpose() * R_ecef_local * pr_weight * ratio实则为residual(Pseudorange)对于Pi求导的结果
同理J_Pi.bottomLeftCorner<1, 3>() = (sv_vel-V_ecef).transpose() * unit2rcv_pos * R_ecef_local * dp_weight * ratio;实则表示对于residual[2]也就是residual(DopplerVelocity对Pi求导的结果)
其中residual[2]的设置为: residuals[1] = (dopp_estimated + obs->dopp[freq_idx]*wavelength) * dp_weight;
而J_Pi.bottomLeftCorner<1, 3>()填入的数值 正好是对residual[2]求导的结果:(sv_vel-V_ecef).transpose() * unit2rcv_pos *
R_ecef_local * dp_weight * ratio;

接下来的

if (jacobians[1])
        {
            Eigen::Map<Eigen::Matrix<double, 2, 9, Eigen::RowMajor>> J_Vi(jacobians[1]);
            J_Vi.setZero();
            J_Vi.bottomLeftCorner<1, 3>() = rcv2sat_unit.transpose() * (-1.0) * 
                R_ecef_local * dp_weight * ratio;
        }

同样能理解:为residual(2维度向量)对待优化变量的求导,其中这个待优化变量选择的是9维度表示——待优化变量中包括velocity(3),bias_gyro(3)bias_acce(3),而对于residual求导也就是velocity会存在数值,我进行求导后,推导出来的结果和J_Vi.bottomLeftCorner<1, 3>()赋值的结果相同为:rcv2sat_unit.transpose() * (-1.0) *
R_ecef_local * dp_weight * ratio;这是对residul(DopplerVelocity求导的结果)
接下来的Jacobian赋值同理,作者真的很强,能够独立推导residual的待优化变量求导 我向大佬学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值