【抽代复习笔记】03-分配律与映射(双射、复合映射、逆映射)

本文详细解释了集合A上的代数运算中的分配律概念,以及单射、满射和复合映射的定义及其性质。通过例题说明了如何判断运算是否满足分配律,并证明了复合映射的性质,包括单射、满射和双射的组合仍然保持相应性质。
摘要由CSDN通过智能技术生成

1、分配律

设⊕、⊙为集合A上的代数运算(根据上一篇文章的讲述,即∀a、b∈A,有a⊕b∈A和a⊙b∈A),如果对于任意的a1、a2、b∈A,都满足以下的等式:

b⊙(a1⊕a2)=(b⊙a1)⊕(b⊙a2),

则可以说:⊙对于⊕适合左分配律(也称“第一分配律”)。

同理,如果对于任意的a1、a2、b∈A,都满足以下的等式:

(a1⊕a2)⊙b=(a1⊙b)⊕(a2⊙b),

则可以说:⊙对于⊕适合右分配律(也称“第二分配律”)。

如果⊙对于⊕既适合左分配律、也适合右分配律,则称⊙对于⊕适合分配律。

如果⊙对于⊕适合左分配律,那么对于任意的a1,a2,...,an,b∈A,有:

b⊙(a1⊕a2⊕...⊕an)=(b⊙a1)⊕(b⊙a2)⊕...⊕(b⊙an);

如果⊙对于⊕适合右分配律,那么对于任意的a1,a2,...,an,b∈A,有:

(a1⊕a2⊕...⊕an)⊙b=(a1⊙b)⊕(a2⊙b)⊕...⊕(an⊙b);

 

例题:

设⊕、⊙为集合A上的代数运算,定义a⊕b = a+b,a⊙b = a+1,对于任意的c∈A,有:

c⊙(a⊕b) = c⊙(a+b) = c+1;

(c⊙a)⊕(c⊙b) = (c+1)⊕(c+1) = c+1+c+1 = 2(c+1)

因此,c⊙(a⊕b) ≠ (c⊙a)⊕(c⊙b),所以⊙对于⊕不适合左分配律;

同理,(a⊕b)⊙c = (a+b)⊙c = a+b+1,

(a⊙c)⊕(b⊙c) = (a+1)⊕(b+1) = a+1+b+1 = a+b+2,

因此,(a⊕b)⊙c ≠ (a⊙c)⊕(b⊙c),所以⊙对于⊕也不适合右分配律。

 

2、双射

单射:对于集合A中任意两个元素a和b,如果由f(a)=f(b)∈B, ,可以推导出a=b,那么就称f为A→B的一个单射;

满射:如果对于B中的任意元素b,都存在A中的元素a,使得f(a) = b,则称f为A→B的一个满射;

如果f:A→B既是单射、又是满射,那么称f为A→B的一个双射。

 

3、复合映射

定义f:A→B,g:B→C,对于A中任一个元素x,都有g[f(x)] = (g o f)(x),称 g o f 为f和g的复合映射。

两个单射的复合还是单射,两个满射的复合还是满射,两个双射的复合也依旧还是双射。

证明:

(1)证“单”:假设f,g均为单射,即对任意的a1、a2∈A,且a1 ≠ a2,都有f(a1) ≠ f(a2),

则(g o f)(a1) = g[f(a1)] ≠ g[f(a2)] = (g o f)(a2),

因此符合映射g o f也是单射;

(2)证“满”:假设f,g均为满射,则对于C中的任意元素c,都存在b∈B,使得g(b)=c,

并且存在a∈A,使得f(a) = b,

所以有g[f(a)] = g(b) = c = (g o f)(a),

因此对于任意的c∈C,都存在a∈A,使得(g o f)(a) = c,

所以 g o f 为满射。

(3)证“双”:由(1)知若f和g都是单射,则 g o f 也是单射;

由(2)知若f和g都是满射,则 g o f 也是满射;

因此若f和g既是单射,也是满射,那么 g o f 同样既是单射也是满射;

这就证明了如果f和g都是双射,那么 g o f 也是双射。

 

4、逆映射

(在WPS里面写好再复制粘贴过来,结果发现使用“数学公式”功能写的部分无法粘贴,这一节部分内容涉及到很多上下标,没有用“数学公式”功能会很不方便,因此这一节决定直接插入从WPS那边截的图了)

26471aa560da4f93955ce84e297df0af.png

 

(待续......)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值