我为人人-数据结构共享题库-考研1800-I
分数 3
作者 鲁法明
单位 山东科技大学
某二叉树中序序列为A,B,C,D,E,F,G,后序序列为B,D,C,A,F,G,E。该二叉树对应的森林包括多少棵树( )
A.
l
B.
2
C.
3
D.
概念上是错误的
分数 3
作者 鲁法明
单位 山东科技大学
下面的说法中正确的是( ). (1)任何一棵二叉树的叶子结点在三种遍历中的相对次序不变;(2)按二叉树定义,具有三个结点的二叉树共有6种。
A.
(1)(2)
B.
(1)
C.
(2)
D.
(1)、(2)都错
分数 2
作者 鲁法明
单位 山东科技大学
连续存储设计时,存储单元的地址( )。
A.
一定连续
B.
一定不连续
C.
不一定连续
D.
部分连续,部分不连续
分数 2
作者 鲁法明
单位 山东科技大学
部分连续,部分不连续
A.
顺序表
B.
哈希表
C.
有序表
D.
单链表
分数 2
作者 鲁法明
单位 山东科技大学
设有数组A[i,j],数组的每个元素长度为3字节,i的值为1 到8 ,j的值为1 到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为( )。
A.
BA+141
B.
BA+180
C.
BA+222
D.
BA+225
分数 2
作者 鲁法明
单位 山东科技大学
若某线性表最常用的操作是存取任一指定序号的元素和在最后进行插入和删除运算,则利用( )存储方式最节省时间。
A.
顺序表
B.
双链表
C.
带头结点的双循环链表
D.
单循环链表
分数 2
作者 鲁法明
单位 山东科技大学
某线性表中最常用的操作是在最后一个元素之后插入一个元素和删除第一个元素,则采用( )存储方式最节省运算时间。
A.
单链表
B.
仅有头指针的单循环链表
C.
双链表
D.
仅有尾指针的单循环链表
分数 2
作者 鲁法明
单位 山东科技大学
线性表( a1,a2,…,an)以链接方式存储时,访问第i位置元素的时间复杂性为( )。
A.
O(i)
B.
O(1)
C.
O(n)
D.
O(i-1)
分数 2
作者 鲁法明
单位 山东科技大学
对于一个头指针为head的带头结点的单链表,判定该表为空表的条件是( )。
A.
head==NULL
B.
head→next==NULL
C.
head→next==head
D.
head!=NULL
分数 2
作者 鲁法明
单位 山东科技大学
若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pN,若pN是n,则pi是( )。
A.
i
B.
n-i
C.
n-i+1
D.
不确定
分数 2
作者 鲁法明
单位 山东科技大学
有六个元素6,5,4,3,2,1 的顺序进栈,问下列哪一个不是合法的出栈序列?( ).
A.
5 4 3 6 1 2
B.
4 5 3 1 2 6
C.
3 4 6 5 2 1
D.
2 3 4 1 5 6
分数 2
作者 鲁法明
单位 山东科技大学
散列文件使用散列函数将记录的关键字值计算转化为记录的存放地址,因为散列函数是一对一的关系,则选择好的( )方法是散列文件的关键。
A.
散列函数
B.
除余法中的质数
C.
冲突处理
D.
散列函数和冲突处理
分数 3
作者 鲁法明
单位 山东科技大学
设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T中的叶子数为( )
A.
5
B.
6
C.
7
D.
8
分数 3
作者 鲁法明
单位 山东科技大学
在下述结论中,正确的是( )
①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;
④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A.
①②③
B.
②③④
C.
②④
D.
①④
分数 3
作者 鲁法明
单位 山东科技大学
设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是( )
A.
m - n
B.
m - n - 1
C.
n + 1
D.
条件不足,无法确定
分数 3
作者 鲁法明
单位 山东科技大学
算术表达式a+b * (c+d/e)转为后缀表达式后为( )
A.
ab+cde/ *
B.
abcde/+ * +
C.
abcde/ * ++
D.
abcde * /++
分数 3
作者 鲁法明
单位 山东科技大学
树是结点的有限集合,它( (1))根结点,记为T。其余结点分成为m(m>0)个((2))的集合T1,T2, …,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。一个结点的子结点个数称为该结点的( (3) )。二叉树与树是两个不同的概念,二叉树也是结点的有限集合,它((4))根结点。可以把树的根结点的层数定义为1,其他结点的层数等于其父结点所在层数加上1。令T是一棵二叉树,Ki和Kj是T中子结点数小于2的结点中的任意两个,它们所在的层数分别为λKi和λKj,当关系式│λKi-λKj│≤1一定成立时,则称T为一棵((5))。供选择的答案:
(1)(4) A. 有0个或1个 B. 有0个或多个 C. 有且只有一个 D. 有1个或1个以上
(2) A. 互不相交 B.允许相交 C.允许叶结点相交 D.允许树枝结点相交
(3) A. 权 B.维数 C.次数 D.序
(5) A. 丰满树 B.查找树 C.平衡树 D.完全树
A.
(1)C (2)A (3)C (4)A (5)C
B.
(1)A (2)B (3)C (4)D (5)D
C.
(1)A (2)D (3)C (4)B (5)D
D.
(1)D (2)D (3)A (4)C (5)B
分数 3
作者 鲁法明
单位 山东科技大学
若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是( )
A.
9
B.
11
C.
15
D.
不确定
分数 3
作者 鲁法明
单位 山东科技大学
在一棵三元树中度为3的结点数为2个,度为2的结点数为1个,度为1的结点数为2个,则度为0的结点数为( )个
A.
4
B.
5
C.
6
D.
7
分数 3
作者 鲁法明
单位 山东科技大学
设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。与森林F对应的二叉树根结点的右子树上的结点个数是( )。
A.
M1
B.
M1 + M2
C.
M3
D.
M2 + M3
分数 3
作者 鲁法明
单位 山东科技大学
具有10个叶结点的二叉树中有( )个度为2的结点,
A.
8
B.
9
C.
10
D.
11
分数 3
作者 鲁法明
单位 山东科技大学
一棵完全二叉树上有1001个结点,其中叶子结点的个数是( )
A.
250
B.
500
C.
254
D.
505
E.
以上答案都不对
分数 3
作者 鲁法明
单位 山东科技大学
设给定权值总数有n 个,其哈夫曼树的结点总数为( )
A.
不确定
B.
2n
C.
2n + 1
D.
2n - 1
分数 3
作者 鲁法明
单位 山东科技大学
有n个叶子的哈夫曼树的结点总数为( )。
A.
不确定
B.
2n
C.
2n + 1
D.
2n - 1
分数 3
作者 鲁法明
单位 山东科技大学
若度为m的哈夫曼树中,其叶结点个数为n,则非叶结点的个数为( )。
A.
n - 1
B.
└n/m┘-1
C.
┌(n-1)/(m-1)┐
D.
┌n/(m-1)┐-1
E.
┌(n+1)/(m+1)┐-1
分数 3
作者 鲁法明
单位 山东科技大学
有关二叉树下列说法正确的是( )
A.
二叉树的度为2
B.
一棵二叉树的度可以小于2
C.
二叉树中至少有一个结点的度为2
D.
二叉树中任何一个结点的度都为2
分数 3
作者 鲁法明
单位 山东科技大学
二叉树的第I层上最多含有结点数为( )
A.
2^I
B.
2^(I - 1) - 1
C.
2^(I - 1)
D.
2^I - 1
分数 3
作者 鲁法明
单位 山东科技大学
一个具有1025个结点的二叉树的高h为( )
A.
11
B.
10
C.
11至1025之间
D.
10至1024之间
分数 3
作者 鲁法明
单位 山东科技大学
一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点
A.
2h
B.
2h - 1
C.
2h + 1
D.
h + 1
分数 3
作者 鲁法明
单位 山东科技大学
一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足( )
A.
所有的结点均无左孩子
B.
所有的结点均无右孩子
C.
只有一个叶子结点
D.
是任意一棵二叉树
分数 3
作者 鲁法明
单位 山东科技大学
在二叉树结点的先序序列,中序序列和后序序列中,所有叶子结点的先后顺序( )
A.
都不相同
B.
完全相同
C.
先序和中序相同,而与后序不同
D.
中序和后序相同,而与先序不同
分数 3
作者 鲁法明
单位 山东科技大学
某二叉树的前序序列和后序序列正好相反,则该二叉树一定是( )的二叉树。
A.
空或只有一个结点
B.
任一结点无左子树
C.
高度等于其结点数
D.
任一结点无右子树
分数 3
作者 鲁法明
单位 山东科技大学
在完全二叉树中,若一个结点是叶结点,则它没( )。
A.
左子结点
B.
右子结点
C.
左子结点和右子结点
D.
左子结点,右子结点和兄弟结点
分数 3
作者 鲁法明
单位 山东科技大学
一棵左子树为空的二叉树在先序线索化后,其中空的链域的个数是:( )
A.
不确定
B.
0
C.
1
D.
2
分数 3
作者 鲁法明
单位 山东科技大学
一棵左右子树均不空的二叉树在先序线索化后,其中空的链域的个数是:( )。
A.
0
B.
1
C.
2
D.
不确定
分数 3
作者 鲁法明
单位 山东科技大学
若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则x的前驱为( )
A.
X的双亲
B.
X的右子树中最左的结点
C.
X的左子树中最右结点
D.
X的左子树中最右叶结点
分数 3
作者 鲁法明
单位 山东科技大学
引入二叉线索树的目的是( )
A.
加快查找结点的前驱或后继的速度
B.
为了能在二叉树中方便的进行插入与删除
C.
为了能方便的找到双亲
D.
使二叉树的遍历结果唯一
分数 3
作者 鲁法明
单位 山东科技大学
线索二叉树是一种( )结构。
A.
逻辑
B.
逻辑和存储
C.
物理
D.
线性
分数 3
作者 鲁法明
单位 山东科技大学
n个结点的线索二叉树上含有的线索数为( )
A.
2n
B.
n-l
C.
n+l
D.
n
分数 3
作者 鲁法明
单位 山东科技大学
( )的遍历仍需要栈的支持.
A.
前序线索树
B.
中序线索树
C.
后序线索树
D.
以上均不正确
分数 3
作者 鲁法明
单位 山东科技大学
二叉树在线索后,仍不能有效求解的问题是( )。
A.
前(先)序线索二叉树中求前(先)序后继
B.
中序线索二叉树中求中序后继
C.
中序线索二叉树中求中序前驱
D.
后序线索二叉树中求后序后继
分数 3
作者 鲁法明
单位 山东科技大学
设F是一个森林,B是由F变换得的二叉树。若F中有n个非终端结点,则B中右指针域为空的结点有( )个。
A.
n-1
B.
n
C.
n+1
D.
n+2
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)现有队列Q与栈S,初始时Q中的元素依次是1,2,3,4,5,6(1在队头),S为空。若仅允许下列3种操作:①出队并输出出队元素;②出队并将出队元素入栈;③出栈并输出出栈元素,则不能得到的输出序列是
A.
1,2,5,6,4,3
B.
2,3,4,5,6,1
C.
3,4,5,6,1,2
D.
6,5,4,3,2,1
分数 3
作者 鲁法明
单位 山东科技大学
如果T2是由有序树T转换而来的二叉树,那么T中结点的后序就是T2中结点的( )。
A.
先序
B.
中序
C.
后序
D.
层次序
分数 3
作者 鲁法明
单位 山东科技大学
由3 个结点可以构造出多少种不同的有向树?( )
A.
2
B.
3
C.
4
D.
5
分数 3
作者 鲁法明
单位 山东科技大学
对于前序遍历和后序遍历结果相同的二叉树为( )。
A.
一般二叉树
B.
只有根结点的二叉树
C.
根结点无左孩子的二叉树
D.
根结点无右孩子的二叉树
E.
所有结点只有左子数的二叉树
F.
所有结点只有右子树的二叉树
分数 3
作者 鲁法明
单位 山东科技大学
在下列情况中,可称为二叉树的是( )
A.
每个结点至多有两棵子树的树
B.
哈夫曼树
C.
每个结点至多有两棵子树的有序树
D.
每个结点只有一棵右子树
E.
以上答案都不对
分数 3
作者 鲁法明
单位 山东科技大学
由3 个结点可以构造出多少种不同的二叉树?( )
A.
2
B.
3
C.
4
D.
5
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)没有一个12x12的对称矩阵M,将其上三角部分的元素mi,j(1<=i<=j<=12)按行优先存入C语言的一维数组N中,元素m6,6在N中的下标是
A.
50
B.
51
C.
55
D.
66
分数 3
作者 鲁法明
单位 山东科技大学
下述二叉树中,哪一种满足性质:从任一结点出发到根的路径上所经过的结点序列按其关键字有序()。
A.
二叉排序树
B.
哈夫曼树
C.
AVL树
D.
堆
分数 3
作者 鲁法明
单位 山东科技大学
对于前序遍历与中序遍历结果相同的二叉树为( )。
A.
一般二叉树
B.
只有根结点的二叉树
C.
根结点无左孩子的二叉树
D.
根结点无右孩子的二叉树
E.
所有结点只有左子数的二叉树
F.
所有结点只有右子树的二叉树
分数 3
作者 鲁法明
单位 山东科技大学
下述哪一条是顺序存储结构的优点?( )
A.
存储密度大
B.
插入运算方便
C.
删除运算方便
D.
可方便地用于各种逻辑结构的存储表示
分数 3
作者 鲁法明
单位 山东科技大学
下面关于线性表的叙述中,错误的是哪一个?( )
A.
线性表采用顺序存储,必须占用一片连续的存储单元。
B.
线性表采用顺序存储,便于进行插入和删除操作。
C.
线性表采用链接存储,不必占用一片连续的存储单元。
D.
线性表采用链接存储,便于插入和删除操作。
分数 3
作者 鲁法明
单位 山东科技大学
线性表是具有n个( )的有限序列(n>0)。
A.
表元素
B.
字符
C.
数据元素
D.
数据项
E.
信息项
分数 3
作者 鲁法明
单位 山东科技大学
在叶子数目和权值相同的所有二叉树中,最优二叉树一定是完全二叉树,该说法( )。
A.
正确
B.
错误
分数 3
作者 鲁法明
单位 山东科技大学
若某线性表最常用的操作是存取任一指定序号的元素和在最后进行插入和删除运算,则利用( )存储方式最节省时间。
A.
顺序表
B.
双链表
C.
带头结点的双循环链表
D.
单循环链表
分数 3
作者 鲁法明
单位 山东科技大学
最优二叉树(哈夫曼树)、最优查找树均为平均查找路径长度最小的树,其中对最优二叉树,n表示( )。
A.
结点数
B.
叶结点数
C.
非叶结点数
D.
度为2的结点数
E.
需要一张n个关键字的有序表
F.
需要对n个关键字进行动态插入
G.
需要n个关键字的查找概率表
H.
不需要任何前提
分数 3
作者 鲁法明
单位 山东科技大学
最优二叉树(哈夫曼树)、最优查找树均为平均查找路径长度最小的树,其中对最优查找树,n表示( )
A.
结点数
B.
叶结点数
C.
非叶结点数
D.
度为2的结点数
E.
需要一张n个关键字的有序表
F.
需要对n个关键字进行动态插入
G.
需要n个关键字的查找概率表
H.
不需要任何前提
分数 3
作者 鲁法明
单位 山东科技大学
最优二叉树(哈夫曼树)、最优查找树均为平均查找路径长度最小的树,构造这最优二叉树、最优查找树两种树均( )。
A.
结点数
B.
叶结点数
C.
非叶结点数
D.
度为2的结点数
E.
需要一张n个关键字的有序表
F.
需要对n个关键字进行动态插入
G.
需要n个关键字的查找概率表
H.
不需要任何前提
分数 3
作者 鲁法明
单位 山东科技大学
某线性表中最常用的操作是在最后一个元素之后插入一个元素和删除第一个元素,则采用( )存储方式最节省运算时间。
A.
单链表
B.
仅有头指针的单循环链表
C.
双链表
D.
仅有尾指针的单循环链表
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)若栈S1中保存整数,栈S2中保存运算符,函数F( )依次执行下述各步操作:
(1)从S1中依次弹出两个操作数a和b;
(2)从S2中弹出一个运算符op;
(3)执行相应的运算b op a;
(4)将运算结果压入S1中。
假定S1中的操作数依次是5,8,3,2(2在栈顶),S2中的运算符依次是*,-,+(+)在栈顶。调用3次F( )后,S1栈顶保存的值是
A.
-15
B.
15
C.
-20
D.
20
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)已知字符集{ a,b,c,d,e,f},若各字符出现的次数分别为6,3,8,2,10,4,则对应字符集中各字符的哈夫曼编码可能是
A.
00,1011,01,1010,11,100
B.
00,100,110,000,0010,01
C.
10,1011,11,0011,00,010
D.
0011,10,11,0010,01,000
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)已知二叉排序树如下图所示,元素之间应满足的大小关系是
A.
x1 < x2 < x5
B.
x1 < x4 < x5
C.
x3 < x5 < x4
D.
x4 < x3 < x5
分数 3
作者 鲁法明
单位 山东科技大学
下述编码中哪一个不是前缀码( )。
A.
(00,01,10,11)
B.
(0,1,00,11)
C.
(0,10,110,111)
D.
(1,01,000,001)
分数 3
作者 鲁法明
单位 山东科技大学
下面几个符号串编码集合中,不是前缀编码的是( )。
A.
{0,10,110,1111}
B.
{11,10,001,101,0001}
C.
{00,010,0110,1000}
D.
{b,c,aa,ac,aba,abb,abc}
分数 3
作者 鲁法明
单位 山东科技大学
当一棵有n个结点的二叉树按层次从上到下,同层次从左到右将数据存放在一维数组 A[l..n]中时,数组中第i个结点的左孩子为( )
A.
A[2i](2i=<n)
B.
A[2i+1](2i+1<=n)
C.
A[i-2]
D.
条件不充分,无法确定
分数 3
作者 鲁法明
单位 山东科技大学
设一个链表最常用的操作是在末尾插入结点和删除尾结点,则选用( )最节省时间。
A.
单链表
B.
单循环链表
C.
带尾指针的单循环链表
D.
带头结点的双循环链表
分数 3
作者 鲁法明
单位 山东科技大学
若某表最常用的操作是在最后一个结点之后插入一个结点或删除最后一个结点。则采用( )存储方式最节省运算时间。
A.
单链表
B.
双链表
C.
单循环链表
D.
带头结点的双循环链表
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)下列选项中,不是如下有向图的拓扑序列的是
A.
1,5,2,3,6,4
B.
5,1,2,6,3,4
C.
5,1,2,3,6,4
D.
5,2,1,6,3,4
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)高度为5的3阶B树含有的关键字个数至少是
A.
15
B.
31
C.
62
D.
242
分数 3
作者 鲁法明
单位 山东科技大学
静态链表中指针表示的是( ).
A.
内存地址
B.
数组下标
C.
下一元素地址
D.
左、右孩子地址
分数 3
作者 鲁法明
单位 山东科技大学
链表不具有的特点是( )
A.
插入、删除不需要移动元素
B.
可随机访问任一元素
C.
不必事先估计存储空间
D.
所需空间与线性长度成正比
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)现有长度为7、初始为空的散列表HT,散列函数H(k) = k%7,用线性探测再散列法解决冲突。将关键字22,43,15依次插人到HT后,查找成功的平均查找长度是
A.
1.5
B.
1.6
C.
2
D.
3
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)对初始数据序列(8,3,9,11,2,1,4,7,5,10,6)进行希尔排序。若第一趟排序结果为(1,3,7,5,2,6,4,9,11,10,8),第二趟排序结果为(1,2,6,4,3,7,5,8,11,10,9),则两趟排序采用的增量(间隔)依次是
A.
3,1
B.
3,2
C.
5,2
D.
5,3
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)将数据序列(6,1,5,9,8,4,7)建成大根堆时,正确的序列变化过程是
A.
6,1,7,9,8,4,5——6,9,7,1,8,4,5——9,6,7,1,8,4,5——9,8,7,1,6,4,5
B.
6,9,5,1,8,4,7——6,9,7,1,8,4,5——9,6,7,1,8,4,5——9,8,7,1,6,4,5
C.
6,9,5,1,8,4,7——9,6,5,1,8,4,7——9,6,7,1,8,4,5——9,8,7,1,6,4,5
D.
6,1,7,9,8,4,5——7,1,6,9,8,4,5——7,9,6,1,8,4,5——9,7,6,1,8,4,5——9,8,6,1,7,4,5
分数 3
作者 鲁法明
单位 山东科技大学
(2018年全国考研统考)设一棵非空完全二叉树T的所有叶结点均位于同一层,且每个非叶结点都有2个子结点。若T有k个叶结点。则T的结点总数是
A.
2k-1
B.
2k
C.
k^2
D.
2^k-1
分数 3
作者 鲁法明
单位 山东科技大学
(1) 静态链表既有顺序存储的优点,又有动态链表的优点。所以,它存取表中第i个元素的时间与i无关。
(2) 静态链表中能容纳的元素个数的最大数在表定义时就确定了,以后不能增加。
(3) 静态链表与动态链表在元素的插入、删除上类似,不需做元素的移动。
以上错误的是( )
A.
(1),(2)
B.
(1)
C.
(1),(2), (3)
D.
(2)
分数 3
作者 鲁法明
单位 山东科技大学
若长度为n的线性表采用顺序存储结构,在其第i个位置插入一个新元素的算法的时间复杂度为( )(1<=i<=n+1)。这是一个单选题的样例。
A.
O(0)
B.
O(1)
C.
O(n)
D.
O(n²)
分数 3
作者 鲁法明
单位 山东科技大学
对于顺序存储的线性表,访问结点和增加、删除结点的时间复杂度为
A.
O(n) O(n)
B.
O(n) O(1)
C.
O(1) O(n)
D.
O(1) O(1)
分数 3
作者 鲁法明
单位 山东科技大学
线性表( a1,a2,…,an)以链接方式存储时,访问第i位置元素的时间复杂性为( )
A.
O(i)
B.
O(1)
C.
O(n)
D.
O(i-1)
分数 3
作者 鲁法明
单位 山东科技大学
非空的循环单链表head的尾结点p↑满足( )。
A.
p↑.link=head
B.
p↑.link=NIL
C.
p=NIL
D.
p= head
分数 3
作者 鲁法明
单位 山东科技大学
循环链表H的尾结点P的特点是( )。
A.
P^.NEXT:=H
B.
P^.NEXT:= H^.NEXT
C.
P:=H
D.
P:=H^.NEXT
分数 3
作者 鲁法明
单位 山东科技大学
在一个以 h 为头的单循环链中,p 指针指向链尾的条件是( )
A.
p^.next=h
B.
p^.next=NIL
C.
p^.next.^next=h
D.
p^.data=-1
分数 3
作者 鲁法明
单位 山东科技大学
完成在双循环链表结点p之后插入s的操作是( )
A.
p^.next:=s ; s^.priou:=p; p^.next^.priou:=s ; s^.next:=p^.next;
B.
p^.next^.priou:=s; p^.next:=s; s^.priou:=p; s^.next:=p^.next;
C.
s^.priou:=p; s^.next:=p^.next; p^.next:=s; p^.next^.priou:=s ;
D.
s^.priou:=p; s^.next:=p^.next; p^.next^.priou:=s ; p^.next:=s;
分数 3
作者 鲁法明
单位 山东科技大学
在双向循环链表中,在p指针所指向的结点前插入一个指针q所指向的新结点,其修改指针的操作是( )。
A.
p↑.llink:=q; q↑.rlink:=p; p↑.llink↑.rlink:=q; q↑.llink:=q;
B.
p↑.llink:=q; p↑.llink↑.rlink:=q ; q↑.rlink:= p; q↑.llink:=p↑.llink;
C.
q↑.rlink:=p; q↑.llink:=p↑.llink; p↑.llink↑.rlink:=q; p↑.llink:=q;
D.
q↑.llink:=p↑.llink;q↑.rlink:=p; p↑.llink:=q;p↑.llink:=q;
分数 3
作者 鲁法明
单位 山东科技大学
在非空双向循环链表中q所指的结点前插入一个由p所指的链结点的过程依次为:
rlink(p) ← q; llink(p) ← llink(q); llink(q) ← p; ( )
A.
rlink(q) ← p
B.
rlink(llink(q)) ← p
C.
rlink(llink(p)) ← p
D.
rlink(rlink(p)) ← p
分数 3
作者 鲁法明
单位 山东科技大学
双向链表中有两个指针域,llink和rlink,分别指回前驱及后继,设p指向链表中的一个结点,q指向一待插入结点,现要求在p前插入q,则正确的插入为( )
A.
p^.llink:=q; q^.rlink:=p; p^.llink^.rlink:=q; q^.llink:=p^.llink;
B.
q^.llink:=p^.llink; p^.llink^.rlink:=q; q^.rlink:=p; p^.llink:=q^.rlink;
C.
q^.rlink:=p; p^.rlink:=q; p^.llink^.rlink:=q; q^.rlink:=p;
D.
p^.llink^.rlink:=q; q^.rlink:=p; q^.llink:=p^.llink; p^.llink:=q;
分数 3
作者 鲁法明
单位 山东科技大学
在双向链表指针p的结点前插入一个指针q的结点操作是( )。
A.
p->Llink=q;q->Rlink=p;p->Llink->Rlink=q;q->Llink=q;
B.
p->Llink=q;p->Llink->Rlink=q;q->Rlink=p;q->Llink=p->Llink;
C.
q->Rlink=p;q->Llink=p->Llink;p->Llink->Rlink=q;p->Llink=q;
D.
q->Llink=p->Llink;q->Rlink=q;p->Llink=q;p->Llink=q;
分数 3
作者 鲁法明
单位 山东科技大学
在单链表指针为p的结点之后插入指针为s的结点,正确的操作是:( )
A.
p->next=s;s->next=p->next;
B.
s->next=p->next;p->next=s;
C.
p->next=s;p->next=s->next;
D.
p->next=s->next;p->next=s;
分数 3
作者 鲁法明
单位 山东科技大学
对于一个头指针为head的带头结点的单链表,判定该表为空表的条件是
A.
head==NULL
B.
head→next==NULL
C.
head→next==head
D.
head!=NULL
分数 3
作者 鲁法明
单位 山东科技大学
在双向链表存储结构中,删除p所指的结点时须修改指针( )。
A.
(p^.llink)^.rlink:=p^.rlink (p^.rlink)^.llink:=p^.llink;
B.
p^.llink:=(p^.llink)^.llink (p^.llink)^.rlink:=p;
C.
(p^.rlink)^.llink:=p p^.rlink:=(p^.rlink)^.rlink
D.
p^.rlink:=(p^.llink)^.llink p^.llink:=(p^.rlink)^.rlink;
分数 3
作者 鲁法明
单位 山东科技大学
双向链表中有两个指针域,llink和rlink分别指向前趋及后继,设p指向链表中的一个结点,现要求删去p所指结点,则正确的删除是( )
A.
p^.llink^.rlink:=p^.llink; p^.llink^.rlink:=p^.rlink; dispose(p);
B.
dispose(p); p^.llink^.rlink:=p^.llink; p^.llink^,rlink:=p^.rlink;
C.
p^.llink^.rlink:=p^.llink; dispose(p); p^.llink^.rlink:=p^.rlink;
D.
以上A,B,C都不对。
分数 3
作者 鲁法明
单位 山东科技大学
已知一算术表达式的中缀形式为 A+B
C-D/E,后缀形式为ABC
+DE/-,其前缀形式为( )
A.
-A+B * C/DE
B.
-A+B * CD/E
C.
-+ * ABC/DE
D.
-+A * BC/DE
分数 3
作者 鲁法明
单位 山东科技大学
设有一表示算术表达式的二叉树(见下图),
它所表示的算术表达式是( )
A.
A
B+C/(D * E)+(F-G)
B.
(A
B+C)/(D * E)+(F-G)
C.
(A * B+C)/(D
E+(F-G))
D.
A
B+C/D * E+F-G
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)已知程序如下:
int s(int n)
{
return (n<=0) ? 0 : s(n-1) +n;
}
void main() {
cout<< s(1);
}
程序运行时使用栈来保存调用过程的信息,自栈底到栈顶保存的信息一次对应的是( )
A.
main()->S(1)->S(0)
B.
S(0)->S(1)->main()
C.
main()->S(0)->S(1)
D.
S(1)->S(0)->main()
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)先序序列为a,b,c,d的不同二叉树的个数是( )。
A.
13
B.
14
C.
15
D.
16
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)下列选项给出的是从根分别到达两个叶节点路径上的权值序列,能属于同一棵哈夫曼树的是
A.
24,10,5 和 24,10,7
B.
24,10,5 和 24,12,7
C.
24,10,10 和 24,14,11
D.
24,10,5 和 24,14,6
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)现在有一颗无重复关键字的平衡二叉树(AVL树),对其进行中序遍历可得到一个降序序列。下列关于该平衡二叉树的叙述中,正确的是( )
A.
根节点的度一定为2
B.
树中最小元素一定是叶节点
C.
最后插入的元素一定是叶节点
D.
树中最大元素一定是无左子树
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)设有向图G=(V,E),顶点集V={V0,V1,V2,V3},边集E={< v0,v1>, < v0,v2>,< v0,v3 >,< v1,v3>},若从顶点V0 开始对图进行深度优先遍历,则可能得到的不同遍历序列个数是( )。
A.
2
B.
3
C.
4
D.
5
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)求下面带权图的最小(代价)生成树时,可能是克鲁斯卡(kruskal)算法第二次选中但不是普里姆(Prim)算法(从V4开始)第2次选中的边是( )。
A.
(V1,V3)
B.
(V1,V4)
C.
(V2,V3)
D.
(V3,V4)
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)下列选项中,不能构成折半查找中关键字比较序列的是( )。
A.
500,200,450,180
B.
500,450,200,180
C.
180,500,200,450
D.
180,200,500,450
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)下列排序算法中元素的移动次数和关键字的初始排列次序无关的是( )。
A.
直接插入排序
B.
起泡排序
C.
基数排序
D.
快速排序
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)希尔排序的组内排序采用的是( )。
A.
直接插入排序
B.
折半插入排序
C.
快速排序
D.
归并排序
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)已知小根堆为8,15,10,21,34,16,12,删除关键字8之后需重建堆,在此过程中,关键字之间的比较数是( )。
A.
1
B.
2
C.
3
D.
4
分数 3
作者 鲁法明
单位 山东科技大学
(2015年全国考研统考)已知字符串S为“abaabaabacacaabaabcc”. 模式串t为“abaabc”, 采用KMP算法进行匹配,第一次出现“失配”(s[i] != t[i]) 时,i=j=5,则下次开始匹配时,i和j的值分别是( )
A.
i=1,j=0
B.
i=5,j=0
C.
i=5,j=2
D.
i=6,j=2
分数 3
作者 鲁法明
单位 山东科技大学
下面关于串的的叙述中,哪一个是不正确的?( )
A.
串是字符的有限序列
B.
空串是由空格构成的串
C.
模式匹配是串的一种重要运算
D.
串既可以采用顺序存储,也可以采用链式存储
分数 3
作者 鲁法明
单位 山东科技大学
若串S1='ABCDEFG', S2=9898
,S3=###
,S4=012345
,执行concat(replace(S1,substr(S1,length(S2),length(S3)),S3),substr(S4,index(S2,‘8’),length(S2)))
其结果为( )
A.
ABC###G0123
B.
ABCD###2345
C.
ABC###2345
D.
ABC###G1234
分数 3
作者 鲁法明
单位 山东科技大学
设有两个串p和q,其中q是p的子串,求q在p中首次出现的位置的算法称为( )
A.
求子串
B.
联接
C.
匹配
D.
求串长
分数 3
作者 鲁法明
单位 山东科技大学
已知串S=aaab
,其Next数组值为( )。
A.
0123
B.
1123
C.
1231
D.
1211
分数 3
作者 鲁法明
单位 山东科技大学
串 ababaaababaa
的next数组为( )。
A.
012345678999
B.
012121111212
C.
011234223456
D.
0123012322345
分数 3
作者 鲁法明
单位 山东科技大学
字符串ababaabab
的nextval 为( )
A.
(0,1,0,1,04,1,0,1)
B.
(0,1,0,1,0,2,1,0,1)
C.
(0,1,0,1,0,0,0,1,1)
D.
(0,1,0,1,0,1,0,1,1)
分数 3
作者 鲁法明
单位 山东科技大学
模式串t=abcaabbcabcaabdab
,该模式串的next数组的值为0 1 1 1 2 2 3 1 1 2 3 4 5 6 7 1 2
,nextval数组的值为 ( )。
A.
0 1 1 1 2 2 1 1 1 2 3 4 5 6 7 1 2
B.
0 1 1 1 2 1 2 1 1 2 3 4 5 6 1 1 2
C.
0 1 1 1 0 0 1 3 1 0 1 1 0 0 7 0 1
D.
0 1 1 0 2 1 3 1 0 1 1 0 2 1 7 0 1
分数 3
作者 鲁法明
单位 山东科技大学
设S为一个长度为n的字符串,其中的字符各不相同,则S中的互异的非平凡子串(非空且不同于S本身)的个数为( )。
A.
2n-1
B.
n2
C.
(n2/2)+(n/2)
D.
(n2/2)+(n/2)-1
分数 3
作者 鲁法明
单位 山东科技大学
串的长度是指( )
A.
串中所含不同字母的个数
B.
串中所含字符的个数
C.
串中所含不同字符的个数
D.
串中所含非空格字符的个数
分数 3
作者 鲁法明
单位 山东科技大学
若串S
=“software”,其子串的个数是( )。
A.
8
B.
37
C.
36
D.
9
分数 2
作者 鲁法明
单位 山东科技大学
设连通图G中的边集E={(a,b),(a,e),(a,c),(b,e),(e,d),(d,f),
(f,c)},则从顶点a出发可以得到一种深度优先遍历的顶点序列为。
A.
abedfc
B.
acfebd
C.
aebdfc
D.
aedfcb
分数 2
作者 鲁法明
单位 山东科技大学
已知表头元素为 c 的单链表在内存中的存储状态如下表所示。
现将 f 存放于 1014H 处并插入到单链表中,若 f 在逻辑上位于 a
和 e 之间,则 a, e, f 的“链接地址”依次是
A.
1010H, 1014H, 1004H
B.
1010H, 1004H, 1014H
C.
1014H, 1010H, 1004H
D.
1014H, 1004H, 1010H
分数 2
作者 鲁法明
单位 山东科技大学
使用迪杰斯特拉(Dijkstra)算法求下图中从顶点1到其他各顶点的
最短路径,依次得到的各最短路径的目标顶点是( )。
A.
5 2 3 4 6
B.
5 2 3 6 4
C.
5 2 4 3 6
D.
5 2 6 3 4
分数 2
作者 鲁法明
单位 山东科技大学
将森林转换为对应的二叉树,若在二叉树中,结点u是结点v的父结点
的父结点,则在原来的森林中,u和v可能具有的关系是
I.父子关系
II.兄弟关系
III.u的父结点与v的父结点是兄弟关系
A.
只有II
B.
I和II
C.
I和III
D.
I、II和III
分数 2
作者 鲁法明
单位 山东科技大学
下列关于哈夫曼树的论述不正确的是
A.
哈夫曼树又被称为最优二叉树
B.
哈夫曼树是带权路径最短的二叉树
C.
一棵哈夫曼树任意交换左右子树仍然是一棵哈夫曼树
D.
对给定的输入数值集合所生成的哈夫曼树深度是确定的
分数 2
作者 鲁法明
单位 山东科技大学
设栈S和队列Q的初始状态均为空,元素abcdefg依次进入栈S。若每个
元素出栈后立即进入队列Q,且7个元素出队的顺序是bdcfeag,则栈S
的容量至少是
A.
1
B.
2
C.
3
D.
4
分数 2
作者 鲁法明
单位 山东科技大学
数组A[0...7][0...9]中,每个元素占用3个存储单元,起始存储地址
是1000, 则数组元素A[5][3]的存储地址是
A.
1126
B.
1141
C.
1156
D.
1159
分数 2
作者 鲁法明
单位 山东科技大学
下列程序段的时间复杂度是
conut = 0;
for(k=1;k<=n;k*=2)
for(j=1;j<=n;j++)
count++;
A.
O(log以2为底n的对数 )
B.
O(n)
C.
O(n*log以2为底n的对数 )
D.
O(n的平方)
分数 2
作者 鲁法明
单位 山东科技大学
数据序列{2,1,4,9,8,10,6,20}只能是()排序的两趟排序
后的结果
A.
快速排序
B.
冒泡排序
C.
选择排序
D.
插入排序
分数 2
作者 鲁法明
单位 山东科技大学
假设对长度n=50的有序表进行折半查找,则对应的判定树高度为
()
A.
8
B.
7
C.
6
D.
5
分数 2
作者 鲁法明
单位 山东科技大学
设矩阵 A 是一个对称矩阵,为了节省存储,将其下三角部分
按行序存放在一维数组 B[ 1,n(n-1)/2 ] 中,对下三角部分中任一元
素 a i,j (i≥j), 在一维数组 B 中下标 k 的值是( )
A.
i(i-1)/2+j-1
B.
i(i-1)/2+j
C.
i(i+1)/2+j-1
D.
i(i+1)/2+j
分数 2
作者 鲁法明
单位 山东科技大学
一棵完全二叉树上有1001个结点,其中叶子结点的个数是
A.
500
B.
501
C.
1000
D.
1001
分数 3
作者 鲁法明
单位 山东科技大学
设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a11为第一元素,其存储地址为1,每个元素占一个地址空间,则a85的地址为( )。
A.
13
B.
33
C.
18
D.
40
分数 3
作者 鲁法明
单位 山东科技大学
设有数组A[i,j],数组的每个元素长度为3字节,i的值为1到8,j的值为1到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为( )。
A.
BA+141
B.
BA+180
C.
BA+222
D.
BA+225
分数 3
作者 鲁法明
单位 山东科技大学
假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=( )。
A.
808
B.
818
C.
1010
D.
1020
分数 3
作者 鲁法明
单位 山东科技大学
数组A[0..5,0..6]的每个元素占五个字节,将其按列优先次序存储在起始地址为1000的内存单元中,则元素A[5,5]的地址是( )。
A.
1175
B.
1180
C.
1205
D.
1210
分数 3
作者 鲁法明
单位 山东科技大学
将一个A[1..100,1..100]的三对角矩阵,按行优先存入一维数组B[1‥298]中,A中元素A6665(即该元素下标i=66,j=65),在B数组中的位置K为( )。
A.
195
B.
196
C.
197
D.
198
分数 3
作者 鲁法明
单位 山东科技大学
二维数组A的每个元素是由6个字符组成的串,其行下标i=0,1,…,8,列下标j=1,2,…,10。若A按行先存储,元素A[8,5]的起始地址与当A按列先存储时的元素( )的起始地址相同。设每个字符占一个字节。
A.
A[8,5]
B.
A[3,10]
C.
A[5,8]
D.
A[0,9]
分数 3
作者 鲁法明
单位 山东科技大学
若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线上所有元素)依次存放于一维数组B[1..(n(n+1))/2]中,则在B中确定aij(i<j)的位置k的关系为( )。
A.
i*(i-1)/2+j
B.
j*(j-1)/2+i
C.
i*(i+1)/2+j
D.
j*(j+1)/2+i
分数 3
作者 鲁法明
单位 山东科技大学
设A是n*n的对称矩阵,将A的对角线及对角线上方的元素以列为主的次序存放在一维数组B[1..n(n+1)/2]中,对上述任一元素aij(1≤i,j≤n,且i≤j)在B中的位置为( )。
A.
i(i-l)/2+j
B.
j(j-l)/2+i
C.
j(j-l)/2+i-1
D.
i(i-l)/2+j-1
分数 3
作者 鲁法明
单位 山东科技大学
A[N,N]是对称矩阵,将下面三角(包括对角线)以行序存储到一维数组T[N(N+1)/2]中,则对任一上三角元素a[i][j]对应T[k]的下标k是( )。
A.
i(i-1)/2+j
B.
j(j-1)/2+i
C.
i(j-i)/2+1
D.
j(i-1)/2+1
分数 3
作者 鲁法明
单位 山东科技大学
设二维数组A[1.. m,1.. n](即m行n列)按行存储在数组B[1.. m*n]中,则二维数组元素A[i,j]在一维数组B中的下标为( )。
A.
(i-1)*n+j
B.
(i-1)*n+j-1
C.
i*(j-1)
D.
j*m+i-1
分数 3
作者 鲁法明
单位 山东科技大学
有一个100*90的稀疏矩阵,非0元素有10个,设每个整型数占2字节,则用三元组表示该矩阵时,所需的字节数是( )。
A.
60
B.
66
C.
18000
D.
33
分数 3
作者 鲁法明
单位 山东科技大学
数组A[0..4,-1..-3,5..7]中含有元素的个数( )。
A.
55
B.
45
C.
16
D.
36
分数 3
作者 鲁法明
单位 山东科技大学
用数组r存储静态链表,结点的next域指向后继,工作指针j指向链中结点,使j沿链移动的操作为( )。
A.
j=r[j].next
B.
j=j+1
C.
j=j->next
D.
j=r[j]->next
分数 3
作者 鲁法明
单位 山东科技大学
对稀疏矩阵进行压缩存储目的是( )。
A.
便于进行矩阵运算
B.
便于输入和输出
C.
节省存储空间
D.
降低运算的时间复杂度
分数 3
作者 鲁法明
单位 山东科技大学
已知广义表L=((x,y,z),a,(u,t,w)),从L表中取出原子项t的运算是( )。
A.
head(tail(tail(L)))
B.
tail(head(head(tail(L))))
C.
head(tail(head(tail(L))))
D.
head(tail(head(tail(tail(L)))))
分数 3
作者 鲁法明
单位 山东科技大学
已知广义表LS=((a,b,c),(d,e,f)),运用head和tail函数取出LS中原子e的运算是( )。
A.
head(tail(LS))
B.
tail(head(LS))
C.
head(tail(head(tail(LS)))
D.
head(tail(tail(head(LS))))
分数 3
作者 鲁法明
单位 山东科技大学
广义表A=(a,b,(c,d),(e,(f,g))),则式子Head(Tail(Head(Tail(Tail(A)))))的值为( )。
A.
(g)
B.
(d)
C.
c
D.
d
分数 3
作者 鲁法明
单位 山东科技大学
已知广义表: A=(a,b), B=(A,A), C=(a,(b,A),B), 求下列运算的结果:
tail(head(tail(C))) =( )。
A.
(a)
B.
a
C.
(A)
D.
A
分数 3
作者 鲁法明
单位 山东科技大学
广义表运算式Tail(((a,b),(c,d)))的操作结果是( )。
A.
(c,d)
B.
c,d
C.
((c,d))
D.
d
分数 3
作者 鲁法明
单位 山东科技大学
广义表L=(a,(b,c)),进行Tail(L)操作后的结果为( )。
A.
c
B.
b,c
C.
(b,c)
D.
((b,c))
分数 3
作者 鲁法明
单位 山东科技大学
设广义表L=((a,b,c)),则L的长度和深度分别为( )。
A.
1和1
B.
1和3
C.
1和2
D.
2和3
分数 3
作者 鲁法明
单位 山东科技大学
下面说法不正确的是( )。
A.
广义表的表头总是一个广义表
B.
广义表的表尾总是一个广义表
C.
广义表难以用顺序存储结构
D.
广义表可以是一个多层次的结构
分数 3
作者 鲁法明
单位 山东科技大学
二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10,存放A至少需要 ( )个字节。
A.
90
B.
180
C.
240
D.
270
E.
540
分数 3
作者 鲁法明
单位 山东科技大学
广义表((a,b,c,d))的表头是( ),表尾是( )。
A.
a
B.
( )
C.
(a,b,c,d)
D.
(b,c,d)
分数 3
作者 鲁法明
单位 山东科技大学
广义表(a,(b,c),d,e)的表头为( )。
A.
a
B.
a,(b,c)
C.
(a,(b,c))
D.
(a)
分数 3
作者 鲁法明
单位 山东科技大学
二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10。A的第8列和第5行共占( )个字节。
A.
108
B.
114
C.
54
D.
60
分数 3
作者 鲁法明
单位 山东科技大学
二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10。若A按行存放,元素A[8,5]的起始地址与A按列存放时的元素( )的起始地址一致。
A.
A[8,5]
B.
A[3,10]
C.
A[5,8]
D.
A[0,9]
分数 3
作者 鲁法明
单位 山东科技大学
有一个二维数组A[1:6,0:7] 每个数组元素用相邻的6个字节存储,存储器按字节编址,那么这个数组的体积是()个字节。
A.
12
B.
66
C.
288
D.
283
分数 3
作者 鲁法明
单位 山东科技大学
就一般情况而言,当( )时,按行存储的A[I,J]地址与按列存储的A[J,I]地址相等。
A.
行与列的上界相同
B.
行与列的下界相同
C.
行与列的上、下界都相同
D.
行的元素个数与列的元素个数相同
分数 3
作者 鲁法明
单位 山东科技大学
有一个二维数组A[0:8,1:5],每个数组元素用相邻的4个字节存储,存储器按字节编址,假设存储数组元素A[0,1]的第一个字节的地址是0,存储数组A的最后一个元素的第一个字节的地址是( )。
A.
108
B.
116
C.
176
D.
184
分数 3
作者 鲁法明
单位 山东科技大学
某内排序方法的稳定性是指( )
A.
该排序算法不允许有相同的关键字记录
B.
该排序算法允许有相同的关键字记录
C.
平均时间为0(n log n)的排序方法
D.
以上都不对
分数 3
作者 鲁法明
单位 山东科技大学
下面给出的四种排序法中( )排序法是不稳定性排序法。
A.
直接插入排序
B.
冒泡排序
C.
二路归并排序
D.
堆排序
分数 3
作者 鲁法明
单位 山东科技大学
下列排序算法中,其中( )是稳定的。
A.
堆排序,冒泡排序
B.
快速排序,堆排序
C.
简单选择排序,归并排序
D.
归并排序,冒泡排序
分数 3
作者 鲁法明
单位 山东科技大学
稳定的排序方法是( )
A.
直接插入排序和快速排序
B.
折半插入排序和起泡排序
C.
简单选择排序和四路归并排序
D.
树形选择排序和shell排序
分数 3
作者 鲁法明
单位 山东科技大学
下列排序方法中,哪一个是稳定的排序方法?
A.
简单选择排序
B.
二分法插入排序
C.
希尔排序
D.
快速排序
分数 3
作者 鲁法明
单位 山东科技大学
若要求尽可能快地对序列进行稳定的排序,则应选
A.
快速排序
B.
归并排序
C.
冒泡排序
D.
简单选择排序
分数 3
作者 鲁法明
单位 山东科技大学
若要求排序是稳定的,且关键字为实数,则在下列排序方法中应选( )排序为宜。
A.
直接插入排序
B.
简单选择排序
C.
堆排序
D.
快速排序
分数 3
作者 鲁法明
单位 山东科技大学
若需在O(nlog2n)的时间内完成对数组的排序,且要求排序是稳定的,则可选择的排序方法是
A.
快速排序
B.
堆排序
C.
归并排序
D.
直接插入排序
分数 3
作者 鲁法明
单位 山东科技大学
下面给出的四种排序方法中,排序过程中的比较次数与排序方法无关的是。
A.
选择排序法
B.
插入排序法
C.
快速排序法
D.
堆积排序法
分数 3
作者 鲁法明
单位 山东科技大学
在下列排序算法中,哪一个算法的时间复杂度与初始排序无关
A.
直接插入排序
B.
冒泡排序
C.
快速排序
D.
直接选择排序
分数 3
作者 鲁法明
单位 山东科技大学
数据序列(8,9,10,4,5,6,20,1,2)只能是下列排序算法中的( )的两趟排序后的结果。
A.
选择排序
B.
冒泡排序
C.
插入排序
D.
堆排序
分数 3
作者 鲁法明
单位 山东科技大学
数据序列(2,1,4,9,8,10,6,20)只能是下列排序算法中的( )的两趟排序后的结果。
A.
快速排序
B.
冒泡排序
C.
选择排序
D.
插入排序
分数 3
作者 鲁法明
单位 山东科技大学
对一组数据(84,47,25,15,21)排序,数据的排列次序在排序的过程中的变化为
(1) 84 47 25 15 21 (2) 15 47 25 84 21 (3) 15 21 25 84 47 (4) 15 21 25 47 84
则采用的排序是 ( )。
A.
选择排序
B.
冒泡排序
C.
快速排序
D.
直接插入排序
分数 3
作者 鲁法明
单位 山东科技大学
对序列{15,9,7,8,20,-1,4}进行排序,进行一趟后数据的排列变为{4,9,-1,8,20,7,15};则采用的是( )排序。
A.
选择排序
B.
堆排序
C.
直接插入排序
D.
冒泡排序
分数 3
作者 鲁法明
单位 山东科技大学
下列排序算法中( )不能保证每趟排序至少能将一个元素放到其最终的位置上。
A.
快速排序
B.
shell排序
C.
堆排序
D.
冒泡排序
分数 3
作者 鲁法明
单位 山东科技大学
下列排序算法中( )排序在一趟结束后不一定能选出一个元素放在其最终位置上。
A.
选择排序
B.
冒泡排序
C.
归并排序
D.
堆排序
分数 3
作者 鲁法明
单位 山东科技大学
下列序列中,( )是执行第一趟快速排序后所得的序列。
A.
[68,11,18,69] [23,93,73]
B.
[68,11,69,23] [18,93,73]
C.
[93,73] [68,11,69,23,18]
D.
[68,11,69,23,18] [93,73]
分数 3
作者 鲁法明
单位 山东科技大学
有一组数据(15,9,7,8,20,-1,7,4) 用快速排序的划分方法进行一趟划分后数据的排序为 ( )(按递增序)。
A.
下面的B,C,D都不对。
B.
9,7,8,4,-1,7,15,20
C.
20,15,8,9,7,-1,4,7
D.
9,4,7,8,7,-1,15,20
分数 3
作者 鲁法明
单位 山东科技大学
一组记录的关键码为(46,79,56,38,40,84),则利用快速排序的方法,以第一个记录为基准得到的一次划分结果为( )。
A.
(38,40,46,56,79,84)
B.
(40,38,46,79,56,84)
C.
(40,38,46,56,79,84)
D.
(40,38,46,84,56,79)
分数 3
作者 鲁法明
单位 山东科技大学
在下面的排序方法中,辅助空间为O(n)的是( )
A.
希尔排序
B.
堆排序
C.
选择排序
D.
归并排序
分数 3
作者 鲁法明
单位 山东科技大学
下列排序算法中,在每一趟都能选出一个元素放到其最终位置上,并且其时间性能受数据初始特性影响的是:( )
A.
直接插入排序
B.
快速排序
C.
直接选择排序
D.
堆排序
分数 3
作者 鲁法明
单位 山东科技大学
就平均性能而言,目前最好的内排序方法是( )排序法
A.
冒泡排序
B.
希尔插入排序
C.
选择排序
D.
快速排序
分数 3
作者 鲁法明
单位 山东科技大学
如果只想得到1000个元素组成的序列中第5个最小元素之前的部分排序的序列,用( )方法最快。
A.
冒泡排序
B.
快速排序
C.
Shell排序
D.
堆排序
分数 3
作者 鲁法明
单位 山东科技大学
下列排序算法中,在待排序数据已有序时,花费时间反而最多的是( )排序
A.
希尔排序
B.
快速排序
C.
堆排序
D.
冒泡排序
分数 3
作者 鲁法明
单位 山东科技大学
在文件“局部有序”或文件长度较小的情况下,最佳内部排序的方法是( )
A.
直接插入排序
B.
冒泡排序
C.
简单选择排序
D.
快速排序
分数 3
作者 鲁法明
单位 山东科技大学
对初始状态为递增序列的表按递增顺序排序,最省时间的是( )算法。
A.
堆排序
B.
快速排序
C.
插入排序
D.
归并排序
分数 3
作者 鲁法明
单位 山东科技大学
对初始状态为递增序列的表按递增顺序排序,最费时间的是( )算法。
A.
堆排序
B.
快速排序
C.
插入排序
D.
归并排序
分数 3
作者 鲁法明
单位 山东科技大学
对于栈操作数据的原则是?
A.
先进先出
B.
后进先出
C.
后进后出
D.
不分顺序
分数 3
作者 鲁法明
单位 山东科技大学
一个栈的输入序列为123…n,若输出序列的第一个元素是n,输出第i(1<=i<=n)个元素是?
A.
不确定
B.
n-i+1
C.
i
D.
n-i
分数 3
作者 鲁法明
单位 山东科技大学
若一个栈的输入序列为1,2,3,…,n,输出序列的第一个元素是i,则第j个输出元素是?
A.
i-j-1
B.
i-j
C.
j-i+1
D.
不确定的
分数 3
作者 鲁法明
单位 山东科技大学
若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pN,若pN是n,则pi是?
A.
i
B.
n-i
C.
n-i+1
D.
不确定
分数 3
作者 鲁法明
单位 山东科技大学
若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pN,若pN是n,则pi是?
A.
i
B.
n-i
C.
n-i+1
D.
不确定
分数 3
作者 鲁法明
单位 山东科技大学
有六个元素6,5,4,3,2,1的顺序进栈,问下列哪一个不是合法的出栈序列?
A.
543612
B.
453126
C.
346521
D.
234156
分数 3
作者 鲁法明
单位 山东科技大学
设栈的输入序列是1,2,3,4,则()不可能是其出栈序列。
A.
1,2,4,3
B.
2,1,3,4
C.
1,4,3,2
D.
4,3,1,2
分数 3
作者 鲁法明
单位 山东科技大学
一个栈的输入序列为12345,则下列序列中不可能是栈的输出序列的是?
A.
23415
B.
54132
C.
23145
D.
15432
分数 3
作者 鲁法明
单位 山东科技大学
设一个栈的输入序列是1,2,3,4,5,则下列序列中,是栈的合法输出序列的是
A.
51234
B.
45132
C.
43125
D.
32154
分数 3
作者 鲁法明
单位 山东科技大学
某堆栈的输入序列为a,b,c,d,下面的四个序列中,不可能是它的输出序列的是
A.
acbd
B.
bcda
C.
cdba
D.
dcab
分数 3
作者 鲁法明
单位 山东科技大学
设abcdef以所给的次序进栈,若在进栈操作时,允许退栈操作,则下面得不到的序列为
A.
fedcba
B.
bcafed
C.
dcefba
D.
cabdef
分数 3
作者 鲁法明
单位 山东科技大学
设有三个元素X,Y,Z顺序进栈(进的过程中允许出栈),下列得不到的出栈排列是
A.
XYZ
B.
YZX
C.
ZXY
D.
ZYX
分数 3
作者 鲁法明
单位 山东科技大学
输入序列为ABC,可以变为CBA时,经过的栈操作为
A.
push,pop,push,pop,push,pop
B.
push,push,push,pop,pop,pop
C.
push,push,pop,pop,push,pop
D.
push,pop,push,push,pop,pop
分数 3
作者 鲁法明
单位 山东科技大学
若一个栈以向量V[1..n]存储,初始栈顶指针top为n+1,则下面x进栈的正确操作是
A.
top:=top+1; V [top]:=x
B.
V [top]:=x; top:=top+1
C.
top:=top-1; V [top]:=x
D.
V [top]:=x; top:=top-1
分数 3
作者 鲁法明
单位 山东科技大学
若栈采用顺序存储方式存储,现两栈共享空间V[1..m],top[i]代表第i个栈(i=1,2)栈顶,栈1的底在v[1],栈2的底在V[m],则栈满的条件是
A.
top[2]-top[1]|=0
B.
top[1]+1=top[2]
C.
top[1]+top[2]=m
D.
top[1]=top[2]
分数 3
作者 鲁法明
单位 山东科技大学
栈在()中应用。
A.
递归调用
B.
子程序调用
C.
表达式求值
D.
A,B,C
分数 3
作者 鲁法明
单位 山东科技大学
一个递归算法必须包括
A.
递归部分
B.
终止条件和递归部分
C.
迭代部分
D.
终止条件和迭代部分
分数 3
作者 鲁法明
单位 山东科技大学
执行完下列语句段后,i值为:
int f(int x)
{ return ((x>0) ? x* f(x-1):2);}
int i ;
i =f(f(1));
A.
2
B.
4
C.
8
D.
无限递归
分数 3
作者 鲁法明
单位 山东科技大学
表达式a*(b+c)-d的后缀表达式是
A.
abcd*+-
B.
abc+*d-
C.
abc*+d-
D.
-+*abcd
分数 3
作者 鲁法明
单位 山东科技大学
表达式32^(4+22-6*3)-5求值过程中当扫描到6时,对象栈和算符栈为(),其中^为乘幂。
A.
3,2,4,1,1;(^(+-
B.
3,2,8;(*^-
C.
3,2,4,2,2;(*^(-
D.
3,2,8;(*^(-
分数 3
作者 鲁法明
单位 山东科技大学
设计一个判别表达式中左,右括号是否配对出现的算法,采用()数据结构最佳。
A.
线性表的顺序储存结构
B.
队列
C.
线性表的链式储存结构
D.
栈
分数 3
作者 鲁法明
单位 山东科技大学
用链接方式存储的队列,在进行删除运算时
A.
仅修改头指针
B.
仅修改尾指针
C.
头、尾指针都要修改
D.
头、尾指针可能都要修改
分数 3
作者 鲁法明
单位 山东科技大学
递归过程或函数调用时,处理参数及返回地址,要用一种称为()的数据结构。
A.
队列
B.
多维数组
C.
栈
D.
线性表
分数 3
作者 鲁法明
单位 山东科技大学
假设以数组A[m]存放循环队列的元素,其头尾指针分别为front和rear,则当前队列中的元素个数为
A.
(rear-front+m)%m
B.
rear-front+1
C.
(front-rear+m)%m
D.
(rear-front)%m
分数 3
作者 鲁法明
单位 山东科技大学
若用一个大小为6的数组来实现循环队列,且当前rear和front的值分别为0和3,当从队列中删除一个元素,再加入两个元素后,rear和front的值分别为多少?
A.
1和5
B.
2和4
C.
4和2
D.
5和1
分数 3
作者 鲁法明
单位 山东科技大学
若以1234作为双端队列的输入序列,则既不能由输入受限的双端队列得到,也不能由输出受限的双端队列得到的输出序列是
A.
1234
B.
4132
C.
4231
D.
4213
分数 3
作者 鲁法明
单位 山东科技大学
循环队列存储在数组A[0..m]中,则入队时的操作为
A.
rear=rear+1
B.
rear=(rear+1)mod(m-1)
C.
rear=(rear+1)modm
D.
rear=(rear+1)mod(m+1)
分数 3
作者 鲁法明
单位 山东科技大学
最大容量为n的循环队列,队尾指针是rear,队头是front,则队空的条件是
A.
(rear+1)MODn=front
B.
rear=front
C.
rear+1=front
D.
(rear-l)MODn=front
分数 3
作者 鲁法明
单位 山东科技大学
栈和队列的共同点是
A.
都是先进先出
B.
都是先进后出
C.
只允许在端点处插入和删除元素
D.
没有共同点
分数 3
作者 鲁法明
单位 山东科技大学
栈和队都是?
A.
顺序储存的线性结构
B.
链式储存的非线性结构
C.
限制存取点的线性结构
D.
限制存取点的非线性结构
分数 3
作者 鲁法明
单位 山东科技大学
设栈S和队列Q的初始状态为空,元素e1,e2,e3,e4,e5和e6依次通过栈S,一个元素出栈后即进队列Q,若6个元素出队的序列是e2,e4,e3,e6,e5,e1则栈S的容量至少应该是
A.
6
B.
4
C.
3
D.
2
分数 2
作者 鲁法明
单位 山东科技大学
用单链表表示的链式队列的队头在链表的()位置。
A.
链头
B.
链尾
C.
链中
分数 3
作者 鲁法明
单位 山东科技大学
下列排序算法中,( )算法可能会出现下面情况:在最后一趟开始之前,所有元素都不在其最终的位置上。
A.
堆排序
B.
冒泡排序
C.
快速排序
D.
插入排序
分数 3
作者 鲁法明
单位 山东科技大学
下列排序算法中,占用辅助空间最多的是:( )
A.
归并排序
B.
快速排序
C.
希尔排序
D.
堆排序
分数 3
作者 鲁法明
单位 山东科技大学
从未排序序列中依次取出一个元素与已排序序列中的元素依次进行比较,然后将其放在已排序序列的合适位置,该排序方法称为()排序法
A.
插入
B.
选择
C.
希尔
D.
二路归并
分数 3
作者 鲁法明
单位 山东科技大学
在排序算法中,每次从未排序的记录中挑出最小(或最大)关键码字的记录,加入到已排序记录的末尾,该排序方法是( )。
A.
选择
B.
冒泡
C.
插入
D.
堆
分数 3
作者 鲁法明
单位 山东科技大学
用直接插入排序方法对下面四个序列进行排序(由小到大),元素比较次数最少的是( )
A.
94,32,40,90,80,46,21,69
B.
32,40,21,46,69,94,90,80
C.
21,32,46,40,80,69,90,94
D.
90,69,80,46,21,32,94,40
分数 3
作者 鲁法明
单位 山东科技大学
对序列{15,9,7,8,20,-1,4,} 用希尔排序方法排序,经一趟后序列变为{15,-l,4,8,20,9,7}则该次采用的增量是( )
A.
1
B.
4
C.
3
D.
2
分数 3
作者 鲁法明
单位 山东科技大学
对下列关键字序列用快速排序法进行排序时,速度最快的情形是( )。
A.
{21,25,5,17,9,23,30}
B.
{25,23,30,17,21,5,9}
C.
{21,9,17,30,25,23,5}
D.
{5,9,17,21,23,25,30}
分数 3
作者 鲁法明
单位 山东科技大学
对关键码序列28,16,32,12,60,2,5,72快速排序,从小到大一次划分结果为( )。
A.
(2,5,12,16)26(60,32,72)
B.
(5,16,2,12)28(60,32,72)
C.
(5,16,2,12)28(60,32,72)
D.
(5,16,2,12)28(32,60,72)
分数 3
作者 鲁法明
单位 山东科技大学
对n个记录的线性表进行快速排序为减少算法的递归深度,以下叙述正确的是( )。
A.
每次分区后,先处理较短的部分
B.
每次分区后,先处理较长的部分
C.
与算法每次分区后的处理顺序无关
D.
以上三者都不对
分数 3
作者 鲁法明
单位 山东科技大学
直接插入排序在最好情况下的时间复杂度为( )
A.
O(logn)
B.
O(n)
C.
O(n*logn
D.
O(n2)
分数 3
作者 鲁法明
单位 山东科技大学
若用冒泡排序方法对序列{10,14,26,29,41,52}从大到小排序,需进行( )次比较
A.
3
B.
10
C.
15
D.
25
分数 3
作者 鲁法明
单位 山东科技大学
采用简单选择排序,比较次数与移动次数分别为( )
A.
O(n),O(logn)
B.
O(logn),0(n*n)
C.
0(n*n),0(n)
D.
0(nlogn),0(n)
分数 3
作者 鲁法明
单位 山东科技大学
当n个整型数据是有序时,对这n个数据用快速排序算法排序,则时间复杂度是 ( 6 ),当用递归算法求n!时,算法的时间复杂度是 ( 7 ),则:(6)-(7)=( )。
A.
O(n)
B.
O(nlogn)
C.
O(n*n)
D.
O(logn)
分数 3
作者 鲁法明
单位 山东科技大学
快速排序方法在( )情况下最不利于发挥其长处。
A.
要排序的数据量太大
B.
要排序的数据中含有多个相同值
C.
要排序的数据个数为奇数
D.
要排序的数据已基本有序
分数 3
作者 鲁法明
单位 山东科技大学
在含有n个关键字的小根堆(堆顶元素最小)中,关键字最大的记录有可能存储在( )位置上。
A.
[n/2]
B.
[n/2] -1
C.
1
D.
[n/2] +2
分数 3
作者 鲁法明
单位 山东科技大学
以下序列不是堆的是( )。
A.
(100,85,98,77,80,60,82,40,20,10,66)
B.
(100,98,85,82,80,77,66,60,40,20,10)
C.
(10,20,40,60,66,77,80,82,85,98,100)
D.
(100,85,40,77,80,60,66,98,82,10,20)
分数 3
作者 鲁法明
单位 山东科技大学
下列四个序列中,哪一个是堆( )。
A.
75,65,30,15,25,45,20,10
B.
75,65,45,10,30,25,20,15
C.
75,45,65,30,15,25,20,10
D.
75,45,65,10,25,30,20,15
分数 3
作者 鲁法明
单位 山东科技大学
在对n个元素的序列进行排序时,堆排序所需要的附加存储空间是( )
A.
O(log2n)
B.
O(1)
C.
O(n)
D.
O(nlog2n)
分数 3
作者 鲁法明
单位 山东科技大学
对n 个记录的文件进行堆排序,最坏情况下的执行时间是多少?
A.
O(log2n)
B.
O(n)
C.
O(nlog2n)
D.
O(n*n)
分数 3
作者 鲁法明
单位 山东科技大学
有一组数据(15,9,7,8,20,-1,7,4),用堆排序的筛选方法建立的初始堆为( )
A.
-1,4,8,9,20,7,15,7
B.
-1,7,15,7,4,8,20,9
C.
-1,4,7,8,20,15,7,9
D.
以上三项都不对
分数 3
作者 鲁法明
单位 山东科技大学
在排序算法中每一项都与其它各项进行比较,计算出小于该项的项的个数,以确定该项的位置叫( )。
A.
插入排序
B.
枚举排序
C.
选择排序
D.
交换排序
分数 3
作者 鲁法明
单位 山东科技大学
就排序算法所用的辅助空间而言,堆排序,快速排序,归并排序的关系是( )。
A.
堆排序 < 快速排序 < 归并排序
B.
堆排序 < 归并排序 < 快速排序
C.
堆排序 > 归并排序 > 快速排序
D.
堆排序 > 快速排序 > 归并排序
E.
以上答案都不对
分数 3
作者 鲁法明
单位 山东科技大学
将两个各有N个元素的有序表归并成一个有序表,其最少的比较次数是 。
A.
N
B.
2N-1
C.
2N
D.
N-1
分数 3
作者 鲁法明
单位 山东科技大学
基于比较方法的n个数据的内部排序。最坏情况下的时间复杂度能达到的最好下界是( )。
A.
O(nlogn)
B.
O(logn)
C.
O(n)
D.
O(n*n)
分数 3
作者 鲁法明
单位 山东科技大学
归并排序中,归并的趟数是。
A.
O(n)
B.
O(logn)
C.
O(nlogn)
D.
O(n*n)
分数 3
作者 鲁法明
单位 山东科技大学
已知待排序的n个元素可分为n/k个组,每个组包含k个元素,且任一组内的各元素均分别大于前一组内的所有元素和小于后一组内的所有元素,若采用基于比较的排序,其时间下界应为( )。
A.
![H}RF24FND5BL630_`)Y5MLD.png](~/0de37032-2f4d-467d-b0b1-21393397f9c6.png)
B.
![Z`0QYGBI~]M6V2)I%)LUS59.png](~/2737de0a-c959-43dd-bb4f-12f0d3a8305e.png)
C.
![}DKN]6@I}M~KHSF8%~7W~67.png](~/1b31f047-4d0a-4104-b271-f15e6418a962.png)
D.
分数 3
作者 鲁法明
单位 山东科技大学
采用败者树进行k路平衡归并的外部排序算法,其总的归并效率与k( )。
A.
有关
B.
无关
分数 3
作者 鲁法明
单位 山东科技大学
采用败者树进行K路平衡归并时,总的(包括访外)归并效率与K( )。
A.
有关
B.
无关
分数 3
作者 鲁法明
单位 山东科技大学
排序方法有许多种,(1)法从未排序的序列中依次取出元素,与已排序序列(初始时为空)中的元素作比较,将其放入已排序序列的正确位置上;(2)法从未排序的序列中挑选元素,并将其依次放入已排序序列(初始时为空)的一端; 交换排序方法是对序列中的元素进行一系列比较,当被比较的两元素逆序时,进行交换;(3)和(4)是基于这类方法的两种排序方法, 而(4)是比(3)效率更高的方法;(5)法是基于选择排序的一种排序方法,是完全二叉树结构的一个重要应用。(1)--(5)对应的排序方法正确的是( )
【A.选择排序 B.快速排序 C.插入排序 D.起泡排序 E.归并排序 F.堆排序 G.基数排序】。
A.
ACBDF
B.
CDABF
C.
ACDBF
D.
CADBF
分数 3
作者 鲁法明
单位 山东科技大学
设要将序列(q,h,c,y,p,a,m,s,r,d,f,x) 中的关键码按字母升序重新排序,
(1)( )是初始步长为4的shell排序一趟扫描的结果;
(2)( )是对排序初始建堆的结果;
(3)( )是以第一个元素为分界元素的快速一趟扫描的结果。
①f ,h ,c ,d ,p ,a ,m ,q ,r ,s ,y ,x
②p ,a ,c ,s ,q ,d ,f ,x ,r ,h ,m ,y
③p ,a ,c ,s ,q ,d ,f ,x ,r ,h ,m ,y
④h ,c ,q ,p ,a ,m ,s ,r ,d ,f ,x ,y
⑤h ,q ,c ,y ,a ,p ,m ,s ,d ,r ,f ,x
正确的是( )
A.
③②①
B.
②③④
C.
②③①
D.
③②⑤
分数 3
作者 鲁法明
单位 山东科技大学
对由n个记录所组成的表按关键码排序时,下列各个常用排序算法的平均比较次数分别是:二路归并排序为( 1 B ),直接插入排序为( 2 D ),快速排序为( 3 B ),其中,归并排序和快速排序所需要的辅助存储分别是( 4 C )和( 5 F )。
① O(1)
②
![$B7BA1PD@4`W988@_IWQDZ2.png](~/84f732d3-8894-4159-b66f-09d9a8ebdd0d.png)
③
④
![P4F`$SNXFM7@1%YJXDE06{S.png](~/72d6344d-36b3-4560-97dc-419127752fe3.png)
⑤
![}H8T%]Q$SG_VUD60Y973]21.png](~/6f182464-1ef7-41b6-ad2d-6e5518ea9cb6.png)
⑥
O(n)
A.
②③④⑥⑤
B.
②⑥④③⑤
C.
②④②⑥③
D.
②①②⑥③
分数 3
作者 鲁法明
单位 山东科技大学
算法的计算量的大小称为计算的( )。
A.
效率
B.
复杂性
C.
现实性
D.
难度
分数 3
作者 鲁法明
单位 山东科技大学
算法的时间复杂度取决于( )。
A.
问题的规模
B.
待处理数据的初态
C.
A和B
分数 3
作者 鲁法明
单位 山东科技大学
计算机算法指的是( )。
A.
计算方法
B.
排序方法
C.
解决问题的步骤序列
D.
调度方法
分数 3
作者 鲁法明
单位 山东科技大学
计算机算法,它必须具备( ) 这三个特性。
A.
可执行性、可移植性、可扩充性
B.
可执行性、确定性、有穷性
C.
确定性、有穷性、稳定性
D.
易读性、稳定性、安全性
分数 3
作者 鲁法明
单位 山东科技大学
一个算法应该是( )。
A.
程序
B.
问题求解步骤的描述
C.
要满足五个基本特性
D.
A和C
分数 3
作者 鲁法明
单位 山东科技大学
下面关于算法说法错误的是( )。
A.
算法最终必须由计算机程序实现
B.
为解决某问题的算法同为该问题编写的程序含义是相同的
C.
算法的可行性是指指令不能有二义性
D.
以上几个都是错误的
分数 3
作者 鲁法明
单位 山东科技大学
下面说法错误的是( )。
(1)算法原地工作的含义是指不需要任何额外的辅助空间(2)在相同的规模n下,复杂度O(n)的算法在时间上总是优于复杂度O(2n)的算法(3)所谓时间复杂度是指最坏情况下,估算算法执行时间的一个上界(4)同一个算法,实现语言的级别越高,执行效率就越低
A.
(1)
B.
(1),(2)
C.
(1),(4)
D.
(3)
分数 3
作者 鲁法明
单位 山东科技大学
程序段如下, 其中 n为正整数,则最后一行的语句频度在最坏情况下是( )
FOR i:=n-1 DOWNTO 1 DO
FOR j:=1 TO i DO
IF A[j]>A[j+1]
THEN A[j]与A[j+1]对换;
A.
O(n)
B.
O(nlogn)
C.
O(n3)
D.
O(n2)
分数 3
作者 鲁法明
单位 山东科技大学
对于有n 个结点的二叉树, 其高度为( )
A.
nlog2n
B.
log2n
C.
└log2n┘+1
D.
不确定
分数 3
作者 鲁法明
单位 山东科技大学
一棵具有 n个结点的完全二叉树的树高度(深度)是( )
A.
└logn┘+1
B.
logn+1
C.
└logn┘
D.
logn-1
分数 3
作者 鲁法明
单位 山东科技大学
深度为h的满m叉树的第k层有( )个结点。(1=<k=<h)
A.
m^(k - 1)
B.
m^k - 1
C.
m^(h - 1)
D.
m^h - 1
分数 3
作者 鲁法明
单位 山东科技大学
在一棵高度为k的满二叉树中,结点总数为( )
A.
2^(k - 1)
B.
2^k
C.
2^k - 1
D.
└log2^k┘ + 1
分数 3
作者 鲁法明
单位 山东科技大学
高度为 K的二叉树最大的结点数为( )。
A.
2^k
B.
2^(k - 1)
C.
2^k - 1
D.
2^(k - 1) - 1
分数 3
作者 鲁法明
单位 山东科技大学
从逻辑上可以把数据结构分为( )两大类。
A.
动态结构、静态结构
B.
顺序结构、链式结构
C.
线性结构、非线性结构
D.
初等结构、构造型结构
分数 3
作者 鲁法明
单位 山东科技大学
以下与数据的存储结构无关的术语是( )。
A.
循环队列
B.
链表
C.
哈希表
D.
栈
分数 3
作者 鲁法明
单位 山东科技大学
以下数据结构中,哪一个是线性结构( )?
A.
广义表
B.
二叉树
C.
稀疏矩阵
D.
串
分数 3
作者 鲁法明
单位 山东科技大学
以下那一个术语与数据的存储结构无关?( )
A.
栈
B.
哈希表
C.
线索树
D.
双向链表
分数 3
作者 鲁法明
单位 山东科技大学
在下面的程序段中,对x的赋值语句的频度为( )。
FOR i:=1 TO n DO
FOR j:=1 TO n DO
x:=x+1;
A.
O(2n)
B.
O(n)
C.
O(n2)
D.
O(log2n)
分数 3
作者 鲁法明
单位 山东科技大学
以下哪个数据结构不是多型数据类型( )
A.
栈
B.
广义表
C.
有向图
D.
字符串
分数 3
作者 鲁法明
单位 山东科技大学
以下数据结构中,( )是非线性数据结构
A.
树
B.
字符串
C.
队
D.
栈
分数 3
作者 鲁法明
单位 山东科技大学
下列数据中,( )是非线性数据结构。
A.
栈
B.
队列
C.
完全二叉树
D.
堆
分数 3
作者 鲁法明
单位 山东科技大学
连续存储设计时,存储单元的地址( )。
A.
一定连续
B.
一定不连续
C.
不一定连续
D.
部分连续,部分不连续
分数 3
作者 鲁法明
单位 山东科技大学
以下属于逻辑结构的是( )。
A.
顺序表
B.
哈希表
C.
有序表
D.
单链表
分数 3
作者 鲁法明
单位 山东科技大学
已知某二叉树的后序遍历序列是dabec, 中序遍历序列是debac , 它的前序遍历是( )。
A.
acbed
B.
decab
C.
deabc
D.
cedba
分数 3
作者 鲁法明
单位 山东科技大学
某二叉树中序序列为A,B,C,D,E,F,G,后序序列为B,D,C,A,F,G,E 则前序序列是:( )。
A.
E,G,F,A,C,D,B
B.
E,A,C,B,D,G,F
C.
E,A,G,C,F,B,D
D.
上面的都不对
分数 3
作者 鲁法明
单位 山东科技大学
二叉树的先序遍历和中序遍历如下: 先序遍历:EFHIGJK;中序遍历: HFIEJKG 。该二叉树根的右子树的根是:( )
A.
E
B.
F
C.
G
D.
H
分数 3
作者 鲁法明
单位 山东科技大学
将一棵树t 转换为孩子—兄弟链表表示的二叉树h,则t的后根序遍历是h 的
A.
前序遍历
B.
中序遍历
C.
后序遍历
D.
以上答案均不正确
分数 3
作者 鲁法明
单位 山东科技大学
一棵树高为K的完全二叉树至少有( )个结点
A.
2^k - 1
B.
2^(k - 1) - 1
C.
2^(k - 1)
D.
2^k
分数 3
作者 鲁法明
单位 山东科技大学
将有关二叉树的概念推广到三叉树,则一棵有244个结点的完全三叉树的高度( )
A.
4
B.
5
C.
6
D.
7
分数 3
作者 鲁法明
单位 山东科技大学
利用二叉链表存储树,则根结点的右指针是( )。
A.
指向最左孩子
B.
指向最右孩子
C.
空
D.
非空
分数 3
作者 鲁法明
单位 山东科技大学
对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用( )次序的遍历实现编号。
A.
先序
B.
中序
C.
后序
D.
从根开始按层次遍历
分数 3
作者 鲁法明
单位 山东科技大学
树的后根遍历序列等同于该树对应的二叉树的( ).
A.
先序序列
B.
中序序列
C.
后序序列
分数 3
作者 鲁法明
单位 山东科技大学
若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树的位置,利用( )遍历方法最合适。
A.
前序
B.
中序
C.
后序
D.
按层次
分数 3
作者 鲁法明
单位 山东科技大学
在下列存储形式中,哪一个不是树的存储形式?( )
A.
双亲表示法
B.
孩子链表表示法
C.
孩子兄弟表示法
D.
顺序存储表示法
分数 3
作者 鲁法明
单位 山东科技大学
一棵二叉树的前序遍历序列为ABCDEFG,它的中序遍历序列可能是( )
A.
CABDEFG
B.
ABCDEFG
C.
DACEFBG
D.
ADCFEG
分数 3
作者 鲁法明
单位 山东科技大学
已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为( )。
A.
CBEFDA
B.
FEDCBA
C.
CBEDFA
D.
不定
我为人人-数据结构共享题库-考研1800-II
分数 2
作者 王秀
单位 福州大学
若p1
、p2
都是整型指针,p1
已经指向变量x
,要使p2
也指向x
, ( )是正确的。
A.
p2 = p1;
B.
p2 = **p1;
C.
p2 = &p1;
D.
p2 = *p1;
分数 2
作者 王秀
单位 福州大学
设变量定义为 int a[2]={1,3}, *p=&a[0]+1;
,则*p
的值是( )。
A.
2
B.
3
C.
4
D.
&a[0]+1
分数 2
作者 王秀
单位 福州大学
根据声明int a[10], *p=a;
,下列表达式错误的是( )。
A.
a[9]
B.
p[5]
C.
a++
D.
*p++
分数 2
作者 DS课程组
单位 浙江大学
已知表头元素为c
的单链表在内存中的存储状态如下表所示:
现将f
存放于1014H
处,并插入到单链表中,若f
在逻辑上位于a
和e
之间,则a
、e
、f
的“链接地址”依次
是:
A.
1010H
, 1014H
, 1004H
B.
1010H
, 1004H
, 1014H
C.
1014H
, 1010H
, 1004H
D.
1014H
, 1004H
, 1010H
分数 2
作者 王秀
单位 福州大学
根据声明int (*p)[10]
, p
是一个( )。
A.
数组
B.
指针
C.
函数
D.
数组的元素
分数 2
作者 往年试卷
单位 浙江大学
若定义pf
为指向float
类型变量f
的指针,下列语句中__是正确的。
A.
float f, *pf = f;
B.
float f, *pf = &f;
C.
float *pf = &f, f;
D.
float f, *pf =0.0;
分数 2
作者 往年试卷
单位 浙江大学
若变量已正确定义并且指针p已经指向某个变量x,则(*p)++相当于____。
A.
p++
B.
x++
C.
*(p++)
D.
&x++
分数 2
作者 往年试卷
单位 浙江大学
若p1、p2都是整型指针,p1已经指向变量x,要使p2也指向x, ____是正确的。
A.
p2=p1
B.
p2=**p1
C.
p2=&p1
D.
p2=*p1
分数 1
作者 DS课程组
单位 浙江大学
链表不具有的特点是:
A.
插入、删除不需要移动元素
B.
方便随机访问任一元素
C.
不必事先估计存储空间
D.
所需空间与线性长度成正比
分数 2
作者 DS课程组
单位 浙江大学
设h
为不带头结点的单向链表。在h
的头上插入一个新结点t
的语句是:
A.
h=t; t->next=h->next;
B.
t->next=h->next; h=t;
C.
h=t; t->next=h;
D.
t->next=h; h=t;
分数 2
作者 DS课程组
单位 浙江大学
在单链表中,若p
所指的结点不是最后结点,在p
之后插入s
所指结点,则执行
A.
s->next=p; p->next=s;
B.
s->next=p->next; p=s;
C.
s->next=p->next; p->next=s;
D.
p->next=s; s->next=p;
分数 1
作者 DS课程组
单位 浙江大学
线性表若采用链式存储结构时,要求内存中可用存储单元的地址
A.
必须是连续的
B.
连续或不连续都可以
C.
部分地址必须是连续的
D.
一定是不连续的
分数 1
作者 DS课程组
单位 浙江大学
线性表L在什么情况下适用于使用链式结构实现?
A.
需不断对L进行删除插入
B.
需经常修改L中的结点值
C.
L中含有大量的结点
D.
L中结点结构复杂
分数 2
作者 往年试卷
单位 浙江大学
以下scanf
函数调用语句中不正确的是__。
struct pupil {
char name[20];
int age;
int sex;
} pup[5], *p=pup;
A.
scanf("%s", pup[0].name);
B.
scanf("%d", &pup[0].age);
C.
scanf("%d", p->age);
D.
scanf("%d", &(p->sex));
分数 2
作者 往年试卷
单位 浙江大学
下列程序段的输出是____。
int c[]={1, 3, 5};
int *k=c+1;
printf("%d", *++k);
A.
3
B.
4
C.
5
D.
6
分数 2
作者 往年试卷
单位 浙江大学
对于如下说明,语法和语义都正确的赋值是_____。
int c, *s, a[]={1, 3, 5};
A.
c=*s;
B.
s[0]=a[0];
C.
s=&a[1];
D.
c=a;
分数 2
作者 张泳
单位 浙大城市学院
设有如下定义的链表,则值为7的表达式是()。
struct st{
int n;
struct st *next;
} a[3] = {5, &a[1], 7, &a[2], 9, NULL}, *p = &a;
A.
p->n
B.
(p->n)++
C.
++p->n
D.
p->next->n
分数 2
作者 张泳
单位 浙大城市学院
下列语句定义 x 为指向 int 类型变量 a 的指针,正确的是()。
A.
int a, *x = a;
B.
int a, *x = &a;
C.
int *x = &a, a;
D.
int a, x = a;
分数 2
作者 张泳
单位 浙大城市学院
若有以下说明,且0<=i<10,则对数组元素的错误引用是()。
int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, *p = a, i;
A.
*(a+i)
B.
a[p-a+i]
C.
p+i
D.
*(&a[i])
分数 2
作者 张泳
单位 浙大城市学院
下面定义结构变量的语句中错误的是()。
A.
struct student{ int num; char name[20]; } s;
B.
struct { int num; char name[20]; } s;
C.
struct student{ int num; char name[20]; }; struct student s;
D.
struct student{ int num; char name[20]; }; student s;
分数 2
作者 张泳
单位 浙大城市学院
设有如下定义,则对data中的a成员的正确引用是()。
struct sk{ int a; float b; } data, *p=&data;
A.
(*p).data.a
B.
(*p).a
C.
p->data.a
D.
p.data.a
分数 2
作者 张泳
单位 浙大城市学院
对于以下变量定义,正确的赋值是()。
int *p[3], a[3];
A.
p = a
B.
*p = a[0]
C.
p = &a[0]
D.
p[0] = &a[0]
分数 2
作者 wangxiu
单位 福州大学
有如下说明:
int a[10]={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, *P=a;
则数值为 9 的表达式是( )。
A.
*P+9
B.
*(P+8)
C.
*P+=9
D.
P+8
分数 2
作者 严冰
单位 浙大城市学院
数据的()包括集合、线性结构、树形结构和图形结构四种基本类型。
A.
存储结构
B.
逻辑结构
C.
基本运算
D.
算法描述
分数 2
作者 严冰
单位 浙大城市学院
数据在计算机内存中的表示是指() 。
A.
数据的存储结构
B.
数据结构
C.
数据的逻辑结构
D.
数据元素之间的关系
分数 2
作者 严冰
单位 浙大城市学院
下列关于数据的逻辑结构的叙述中,()是正确的。
A.
数据的逻辑结构是数据元素间关系的描述
B.
数据的逻辑结构反映了数据在计算机中的存储方式
C.
数据的逻辑结构分为顺序结构和链式结构
D.
数据的逻辑结构分为静态结构和动态结构
分数 2
作者 严冰
单位 浙大城市学院
数据结构是一门研究非数值计算的程序设计问题中计算机的()以及它们之间的关系和运算等的学科。
A.
操作对象
B.
计算方法
C.
逻辑存储
D.
数据映象
分数 2
作者 严冰
单位 浙大城市学院
在数据结构中,与所使用的计算机无关的数据结构是()。
A.
逻辑结构
B.
存储结构
C.
逻辑结构和存储结构
D.
物理结构
分数 2
作者 严冰
单位 浙大城市学院
在决定选取何种存储结构时,一般不考虑()。
A.
各结点的值如何
B.
结点个数的多少
C.
对数据有哪些运算
D.
所用编程语言实现这种结构是否方便
分数 2
作者 严冰
单位 浙大城市学院
线性结构中元素之间存在()关系。
A.
一对一
B.
一对多
C.
多对多
D.
多对一
分数 2
作者 严冰
单位 浙大城市学院
树形结构中元素之间存在()关系。
A.
一对一
B.
一对多
C.
多对多
D.
多对一
分数 2
作者 严冰
单位 浙大城市学院
图形结构中元素之间存在()关系。
A.
一对一
B.
一对多
C.
多对多
D.
多对一
分数 2
作者 鲁法明
单位 山东科技大学
从物理存储上可以把数据结构分为
A.
动态结构、静态结构
B.
顺序结构、链式结构
C.
线性结构、树形结构、图形结构和集合结构
D.
基本结构、构造型结构
分数 1
作者 周治国
单位 东北师范大学
在数据结构中,从逻辑上可以把数据结构分成( )。
A.
动态结构和静态结构
B.
紧凑结构和非紧凑结构
C.
线性结构和非线性结构
D.
内部结构和外部结构
分数 1
作者 周治国
单位 东北师范大学
与数据元素本身的形式、内容、相对位置、个数无关的是数据的( )。
A.
存储结构
B.
存储实现
C.
逻辑结构
D.
运算实现
分数 1
作者 周治国
单位 东北师范大学
通常要求同一逻辑结构中的所有数据元素具有相同的特性,这意味着( )。
A.
数据在同一范围内取值
B.
不仅数据元素所包含的数据项的个数要相同,而且对应数据项的类型要一致
C.
每个数据元素都一样
D.
数据元素所包含的数据项的个数要相等
分数 1
作者 周治国
单位 东北师范大学
算法的时间复杂度取决于( )。
A.
问题的规模
B.
待处理数据的初态
C.
计算机的配置
D.
A和B
分数 1
作者 周治国
单位 东北师范大学
以下数据结构中,( )是非线性数据结构。
A.
树
B.
字符串
C.
队列
D.
栈
分数 1
作者 周治国
单位 东北师范大学
以下说法正确的是( )。
A.
数据元素是数据的最小单位
B.
数据项是数据的基本单位
C.
数据结构是带有结构的各数据项的集合
D.
一些表面上很不相同的数据可以有相同的逻辑结构
分数 1
作者 严冰
单位 浙大城市学院
数据的基本单位是()。
A.
数据元素
B.
文件
C.
数据项
D.
数据结构
分数 1
作者 严冰
单位 浙大城市学院
计算机算法指的是()。
A.
计算方法
B.
排序方法
C.
解决问题的有限运算序列
D.
调度方法
分数 1
作者 严冰
单位 浙大城市学院
在存储数据时,通常不仅要存储各数据元素的值,而且还要存储()。
A.
数据的处理方法
B.
数据元素的类型
C.
数据元素之间的关系
D.
数据的存储方法
分数 1
作者 徐婉珍
单位 广东东软学院
(neuDS)链式存储设计时,各结点间的存储单元的地址( )。
A.
一定连续
B.
一定不连续
C.
不一定连续
D.
部分连续,部分不连续
分数 1
作者 严冰
单位 浙大城市学院
不带表头附加结点的单链表为空的判断条件是头指针head满足条件()。
A.
head==NULL
B.
head->next==NULL
C.
head->next== head
D.
head!=NULL
分数 1
作者 严冰
单位 浙大城市学院
可以用带表头附加结点的链表表示线性表,也可以用不带头结点的链表表示线性表,前者最主要的好处是()。
A.
可以加快对表的遍历
B.
使空表和非空表的处理统一
C.
节省存储空间
D.
可以提高存取表元素的速度
分数 1
作者 严冰
单位 浙大城市学院
在单链表中,要删除某一指定结点,必须先找到该结点的()。
A.
直接前驱
B.
自身位置
C.
直接后继
D.
直接后继的后继
分数 1
作者 严冰
单位 浙大城市学院
以下关于链式存储结构的叙述中,()是不正确的。
A.
结点除自身信息外还包括指针域,因此存储密度小于顺序存储结构
B.
逻辑上相邻的结点物理上不必邻接
C.
可以通过计算直接确定第i个结点的存储地址
D.
插入、删除运算操作方便,不必移动结点
分数 1
作者 严冰
单位 浙大城市学院
线性表采用链式存储时,其地址()。
A.
必须是连续的
B.
一定是不连续的
C.
部分地址必须是连续的
D.
连续与否均可以
分数 2
作者 周治国
单位 东北师范大学
下面代码段的时间复杂度是()。
x=n; //n>1 y=0; while( x≥(y+1)*(y+1) ) y++;
A.
O(1)
B.
O(n1/2)
C.
O(n)
D.
O(log2n)
分数 2
作者 徐镜春
单位 浙江大学
下列代码
if ( A > B ) {
for ( i=0; i<N*N/100; i++ )
for ( j=N*N; j>i; j-- )
A += B;
}
else {
for ( i=0; i<N*2; i++ )
for ( j=N*3; j>i; j-- )
A += B;
}
的时间复杂度是:
A.
O(N3)
B.
O(N4)
C.
O(N5)
D.
O(N6)
分数 2
作者 考研试卷
单位 浙江大学
下列函数
int func ( int n )
{ int i = 0, sum = 0;
while ( sum < n ) sum += ++i;
return i;
}
的时间复杂度是:
A.
O(logn)
B.
O(n1/2)
C.
O(n)
D.
O(nlogn)
分数 3
作者 DS课程组
单位 浙江大学
下列代码
for(i=0; i<n; i++)
for(j=i; j>0; j/=2)
printf(“%d\n”, j);
的时间复杂度是:
A.
O(N×i)
B.
O(N)
C.
O(N2)
D.
O(NlogN)
分数 2
作者 周治国
单位 东北师范大学
下面代码段的时间复杂度是()。
x=0; for( i=1; i<n; i++ ) for ( j=1; j<=n-i; j++ ) x++;
A.
O(n)
B.
O(n2)
C.
O(n3)
D.
O(2n)
分数 2
作者 徐镜春
单位 浙江大学
要判断一个整数N(>10)是否素数,我们需要检查3到N之间是否存在奇数可以整除N。则这个算法的时间复杂度是:
A.
O(N/2)
B.
O(N)
C.
O(NlogN)
D.
O(0.5logN)
分数 2
作者 DS课程组
单位 浙江大学
下列函数中,哪个函数具有最慢的增长速度:
A.
N1.5
B.
NlogN2
C.
N2logN
D.
N(logN)2
分数 2
作者 DS课程组
单位 浙江大学
给定N×N×N的三维数组A,则在不改变数组的前提下,查找最小元素的时间复杂度是:
A.
O(N2)
B.
O(NlogN)
C.
O(N2logN)
D.
O(N3)
分数 2
作者 严冰
单位 浙大城市学院
计算机算法必须具备输入、输出和()等五个特性。
A.
可行性、可移植性和可扩充性
B.
可行性、确定性和有穷性
C.
确定性、有穷性和稳定性
D.
易读性、稳定性和安全性
分数 1
作者 DS课程组
单位 浙江大学
对于顺序存储的长度为N的线性表,访问结点和增加结点的时间复杂度为:
A.
O(1), O(1)
B.
O(1), O(N)
C.
O(N), O(1)
D.
O(N), O(N)
分数 2
作者 DS课程组
单位 浙江大学
在N个结点的顺序表中,算法的时间复杂度为O(1)的操作是:
A.
访问第i个结点(1≤i≤N)和求第i个结点的直接前驱(2≤i≤N)
B.
在第i个结点后插入一个新结点(1≤i≤N)
C.
删除第i个结点(1≤i≤N)
D.
将N个结点从小到大排序
分数 2
作者 DS课程组
单位 浙江大学
若某线性表最常用的操作是存取任一指定序号的元素和在最后进行插入和删除运算,则利用哪种存储方式最节省时间?
A.
双链表
B.
单循环链表
C.
带头结点的双循环链表
D.
顺序表
分数 2
作者 周治国
单位 东北师范大学
顺序表中第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是( )。
A.
100
B.
105
C.
108
D.
110
分数 2
作者 徐婉珍
单位 广东东软学院
(neuDS)线性表的顺序存储结构是一种( )
A.
随机存取的存储结构
B.
顺序存取的存储结构
C.
索引存取的存储结构
D.
散列存取的存储结构
分数 2
作者 徐婉珍
单位 广东东软学院
(neuDS)一个顺序表所占用的存储空间大小与( )无关。
A.
表的长度
B.
元素的类型
C.
元素的存放顺序
D.
元素中各字段的类型
分数 2
作者 徐婉珍
单位 广东东软学院
(neuDS)要将一个顺序表{a0,a1,……,an−1}中第i个数据元素ai(0≤i≤n-1)删除,需要移动( )个数据元素。
A.
i
B.
n-i-1
C.
n-i
D.
n-i+1
分数 2
作者 严冰
单位 浙大城市学院
用数组表示线性表的优点是()。
A.
便于插入和删除操作
B.
便于随机存取
C.
可以动态地分配存储空间
D.
不需要占用一片相邻的存储空间
分数 2
作者 严冰
单位 浙大城市学院
若长度为n的线性表采用顺序存储结构,那么删除它的第i个数据元素之前,需要它一次向前移动()个数据元素。
A.
n-i
B.
n+i
C.
n-i-1
D.
n-i+1
分数 2
作者 严冰
单位 浙大城市学院
若长度为n的线性表采用顺序结构,在第i个数据元素之前插入一个元素,需要它依次向后移动()个元素。
A.
n-i
B.
n-i+1
C.
n-i-1
D.
i
分数 2
作者 严冰
单位 浙大城市学院
线性表L=(a1, a2 ,……,an )用一维数组表示,假定删除线性表中任一元素的概率相同(都为1/n),则删除一个元素平均需要移动元素的个数是()。
A.
n/2
B.
(n+1)/2
C.
(n-1)/2
D.
n
分数 2
作者 DS课程组
单位 浙江大学
带头结点的单链表h
为空的判定条件是:
A.
h == NULL;
B.
h->next == NULL;
C.
h->next == h;
D.
h != NULL;
分数 2
作者 DS课程组
单位 浙江大学
将两个结点数都为N且都从小到大有序的单向链表合并成一个从小到大有序的单向链表,那么可能的最少比较次数是:
A.
1
B.
N
C.
2N
D.
NlogN
分数 2
作者 DS课程组
单位 浙江大学
在具有N个结点的单链表中,实现下列哪个操作,其算法的时间复杂度是O(N)?
A.
在地址为p的结点之后插入一个结点
B.
删除开始结点
C.
遍历链表和求链表的第i个结点
D.
删除地址为p的结点的后继结点
分数 2
作者 DS课程组
单位 浙江大学
对于一个具有N个结点的单链表,在给定值为x的结点后插入一个新结点的时间复杂度为
A.
O(1)
B.
O(N/2)
C.
O(N)
D.
O(N2)
分数 2
作者 徐婉珍
单位 广东东软学院
(neuDS)在一个含有n个结点的有序单链表中插入一个新结点,使单链表仍然保持有序的算法的时间复杂度是( )。
A.
O(1)
B.
O(log2n)
C.
O(n)
D.
O(n2)
分数 2
作者 杨斌
单位 枣庄学院
将长度为n的单链表连接在长度为m的单链表之后的算法的时间复杂度为( )。
A.
O(1)
B.
O(m)
C.
O(n)
D.
O(n+m)
分数 2
作者 徐婉珍
单位 广东东软学院
(neuDS)在单链表中,增加一个头结点的最终目的是为了( )。
A.
使单链表至少有一个结点
B.
方便运算的实现
C.
标识表结点中首结点的位置
D.
说明单链表是线性表的链式存储
分数 2
作者 严冰
单位 浙大城市学院
线性链表不具有的特点是()。
A.
随机访问
B.
不必事先估计所需存储空间大小
C.
插入与删除时不必移动元素
D.
所需空间与线性长度成正比
分数 2
作者 严冰
单位 浙大城市学院
线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。
A.
必须是连续的
B.
部分地址必须是连续的
C.
一定是不连续的
D.
连续或不连续都可以
分数 2
作者 严冰
单位 浙大城市学院
对线性表,在下列情况下应当采用链表表示的是()。
A.
经常需要随机地存取元素
B.
经常需要进行插入和删除操作
C.
表中元素需要占据一片连续的存储空间
D.
表中的元素个数不变
分数 2
作者 DS课程组
单位 浙江大学
对于一非空的循环单链表,h
和p
分别指向链表的头、尾结点,则有:
A.
p->next == h
B.
p->next == NULL
C.
p == NULL
D.
p == h
分数 3
作者 DS课程组
单位 浙江大学
在双向循环链表结点p
之后插入s
的语句是:
A.
p->next=s; s->prior=p; p->next->prior=s ; s->next=p->next;
B.
p->next->prior=s; p->next=s; s->prior=p; s->next=p->next;
C.
s->prior=p; s->next=p->next; p->next=s; p->next->prior=s;
D.
s->prior=p; s->next=p->next; p->next->prior=s; p->next=s;
分数 3
作者 DS课程组
单位 浙江大学
在双向链表存储结构中,删除p
所指的结点,相应语句为:
A.
p->prior=p->prior->prior; p->prior->next=p;
B.
p->next->prior=p; p->next=p->next->next;
C.
p->prior->next=p->next; p->next->prior=p->prior;
D.
p->next=p->prior->prior; p->prior=p->next->next;
分数 2
作者 DS课程组
单位 浙江大学
某线性表中最常用的操作是在最后一个元素之后插入一个元素和删除第一个元素,则采用什么存储方式最节省运算时间?
A.
单链表
B.
仅有尾指针的单循环链表
C.
仅有头指针的单循环链表
D.
双链表
分数 2
作者 DS课程组
单位 浙江大学
若某表最常用的操作是在最后一个结点之后插入一个结点或删除最后一个结点。则采用哪种存储方式最节省运算时间?
A.
单链表
B.
双链表
C.
单循环链表
D.
带头结点的双循环链表
分数 2
作者 DS课程组
单位 浙江大学
将线性表La和Lb头尾连接,要求时间复杂度为O(1),且占用辅助空间尽量小。应该使用哪种结构?
A.
单链表
B.
单循环链表
C.
带尾指针的单循环链表
D.
带头结点的双循环链表
分数 2
作者 徐婉珍
单位 广东东软学院
(neuDS)在链表中若经常要删除表中最后一个结点或在最后一个结点之后插入一个新结点,则宜采用()存储方式。
A.
顺序表
B.
用头指针标识的循环单链表
C.
用尾指针标识的循环单链表
D.
双向链表
分数 2
作者 严冰
单位 浙大城市学院
非空的循环单链表head的尾结点(由p所指向)满足()。
A.
p->next == NULL
B.
p == NULL
C.
p->next == head
D.
p == head
分数 2
作者 严冰
单位 浙大城市学院
在循环双链表的p所指结点之前插入s所指结点的操作是()。
A.
p->prior = s; s->next = p; p->prior->next = s; s->prior = p->prior;
B.
p->prior = s; p->prior->next = s; s->next = p; s->prior = p->prior;
C.
s->next = p; s->prior = p->prior; p->prior = s; p->right->next = s;
D.
s->next = p; s->prior = p->prior; p->prior->next = s; p->prior = s;
分数 2
作者 严冰
单位 浙大城市学院
若某表最常用的操作是在最后一个结点之后插入一个结点或删除最后一个结点,则采用()存储方式最节省运算时间。
A.
单链表
B.
给出表头指针的单循环链表
C.
双链表
D.
带表头附加结点的双循环链表
分数 2
作者 严冰
单位 浙大城市学院
某线性表最常用的操作是在最后一个结点之后插入一个结点或删除第一个结点,故采用()存储方式最节省运算时间。
A.
单链表
B.
仅有头结点的单循环链表
C.
双链表
D.
仅有尾指针的单循环链表
分数 2
作者 严冰
单位 浙大城市学院
在一个长度为n(n>1)的单链表上,设有头和尾两个指针,执行()操作与链表的长度有关。
A.
删除单链表中的第一个元素
B.
删除单链表中的最后一个元素
C.
在单链表第一个元素前插入一个新元素
D.
在单链表最后一个元素后插入一个新元素
分数 2
作者 严冰
单位 浙大城市学院
如果对线性表的运算只有4种,即删除第一个元素,删除最后一个元素,在第一个元素前面插入新元素,在最后一个元素的后面插入新元素,则最好使用()。
A.
只有表尾指针没有表头指针的循环单链表
B.
只有表尾指针没有表头指针的非循环双链表
C.
只有表头指针没有表尾指针的循环双链表
D.
既有表头指针也有表尾指针的循环单链表
分数 2
作者 严冰
单位 浙大城市学院
如果对线性表的运算只有2种,即删除第一个元素,在最后一个元素的后面插入新元素,则最好使用()。
A.
只有表头指针没有表尾指针的循环单链表
B.
只有表尾指针没有表头指针的循环单链表
C.
非循环双链表
D.
循环双链表
分数 2
作者 严冰
单位 浙大城市学院
在双向循环链表中,在p所指的结点之后插入s指针所指的结点,其操作是()。
A.
p->next = s; s->prior = p; (p->next)->prior = s; s->next = p->next;
B.
s->prior = p; s->next = p->next; p->next = s; p->next->prior = s;
C.
p->next = s; p->next->prior = s; s->prior = p; s->next = p->next;
D.
s->prior = p; s->next = p->next; p->next->prior = s; p->next = s;
分数 2
作者 严冰
单位 浙大城市学院
带表头附加结点的双向循环链表为空的判断条件是头指针L满足条件()。
A.
L= =NULL
B.
L->right= =NULL
C.
L->left = =NULL
D.
L->right= =L
分数 2
作者 严冰
单位 浙大城市学院
循环链表的主要优点是()。
A.
不再需要头指针了
B.
已知某个结点的位置后,能够很容易找到它的直接前驱
C.
在进行插入、删除运算时,能更好的保证链表不断开
D.
从表中的任意结点出发都能扫描到整个链表
分数 4
作者 严冰
单位 浙大城市学院
已知指针ha和hb分别是两个单链表的头指针,下列算法将这两个链表首尾相连在一起,并形成一个循环链表(即ha的最后一个结点链接hb的第一个结点,hb的最后一个结点指向ha),返回ha作为该循环链表的头指针。请将该算法补充完整。
typedef struct node{
ElemType data;
struct node *next;
}LNode;
LNode *merge(LNode *ha, LNode *hb) {
LNode *p=ha;
if (ha==NULL || hb==NULL) {
cout<<”one or two link lists are empty!”<<endl;
return NULL;
}
while ( p->next!=NULL )
p=p->next;
p->next=hb;
while ( p->next!=NULL )
p=p->next;
__________
}
A.
ha=p->next; return ha;
B.
p->next=ha; return ha;
C.
ha=p->next; return p;
D.
p->next=ha; return p;
分数 4
作者 严冰
单位 浙大城市学院
设有一个双向循环链表,每个结点中除有left、data和right三个域外,还增设了一个访问频度域freq,freq 的初值为零。每当链表进行一次查找操作后,被访问结点的频度域值便增1,同时调整链表中结点的次序,使链表按结点频度值非递增有序的次序排列。下列算法是符合上述要求的查找算法,请将该算法补充完整。
typedef struct Node{
ElemType data;
struct Node *left;
struct Node *right;
intfreq;
} DNode;
DNode *locate_DList(DNode *&L, ElemType x)
{ //在表L中查找元素x,查找成功则调整结点频度域值及结点位置,并返回结点地址;
//查找不成功则返回NULL
DNode *p=L, *q;
if (L==NULL) return NULL;
while (p->data!=x && p->right!=L) p=p->right;
if (p->data!=x) return NULL;
p->freq++;
q=p->left;
while (q!=L && q->freq<=p->freq) q=q->left; //查找插入位置
if (q==L && q->freq<=p->freq) { //需将p结点插在头结点L前
//将p结点先从链表中摘下来
p->left->right=p->right;
p->right->left=p->left;
//将p结点插在L结点前
p->right=L;
p->left=L->left;
L->left->right=p;
L->left=p;
L=p;
}
else if (q!=p->left ) { //若q不是p的前驱,则需调整结点位置,将p结点插在q结点后
//将p结点先从链表中摘下来
p->left->right=p->right;
p->right->left=p->left;
______________ //将p结点插在q结点后
}
return p;
}
A.
p->left=q; p->right=q->right;
B.
p->left=q; q->right=p;
C.
p->left=q; p->right=q->right; q->right->left=p; q->right=p;
D.
p->left=q; q->right=p; p->right=q->right; q->right->left=p;
分数 2
作者 严冰
单位 浙大城市学院
与单链表相比,双链表的优点之一是()。
A.
插入、删除操作更加简单
B.
可随机访问
C.
可以省略表头指针或表尾指针
D.
顺序访问相邻结点更加灵活
分数 2
作者 徐镜春
单位 浙江大学
采用多项式的非零项链式存储表示法,如果两个多项式的非零项分别为N1和N2个,最高项指数分别为M1和M2,则实现两个多项式相乘的时间复杂度是:
A.
O(N1×N2)
B.
O(M1×M2)
C.
O(N1+N2)
D.
O(M1+M2)
分数 2
作者 徐镜春
单位 浙江大学
给定一个堆栈的入栈序列为{ 1, 2, ⋯, n },出栈序列为{ p1, p2, ⋯, pn }。如果p2=n,则存在多少种不同的出栈序列?
A.
1
B.
2
C.
n−1
D.
n
分数 2
作者 DS课程组
单位 浙江大学
设一个堆栈的入栈顺序是1、2、3、4、5。若第一个出栈的元素是4,则最后一个出栈的元素必定是:
A.
1
B.
3
C.
5
D.
1或者5
分数 2
作者 DS课程组
单位 浙江大学
从栈顶指针为ST
的链栈中删除一个结点且用X
保存被删结点的值,则执行:
A.
X= ST->data;
B.
X= ST; ST = ST->next;
C.
X= ST->data; ST = ST->next;
D.
ST = ST->next; X= ST->data;
分数 2
作者 DS课程组
单位 浙江大学
设栈S和队列Q的初始状态均为空,元素a、b、c、d、e、f、g依次进入栈S。若每个元素出栈后立即进入队列Q,且7个元素出队的顺序是b、d、c、f、e、a、g,则栈S的容量至少是:
A.
1
B.
2
C.
3
D.
4
分数 2
作者 DS课程组
单位 浙江大学
假设有5个整数以1、2、3、4、5的顺序被压入堆栈,且出栈顺序为3、5、4、2、1,那么为了获得这样的输出,堆栈大小至少为:
A.
2
B.
3
C.
4
D.
5
分数 2
作者 DS课程组
单位 浙江大学
若元素a、b、c、d、e、f依次进栈,允许进栈、退栈操作交替进行,但不允许连续三次进行退栈工作,则不可能得到的出栈序列是?
A.
b c a e f d
B.
c b d a e f
C.
d c e b f a
D.
a f e d c b
分数 2
作者 DS课程组
单位 浙江大学
设一个栈的输入序列是1、2、3、4、5,则下列序列中,是栈的合法输出序列的是?
A.
3 2 1 5 4
B.
5 1 2 3 4
C.
4 5 1 3 2
D.
4 3 1 2 5
分数 2
作者 DS课程组
单位 浙江大学
有六个元素以6、5、4、3、2、1的顺序进栈,问哪个不是合法的出栈序列?
A.
2 3 4 1 5 6
B.
3 4 6 5 2 1
C.
5 4 3 6 1 2
D.
4 5 3 1 2 6
分数 2
作者 DS课程组
单位 浙江大学
若一个栈的入栈序列为1、2、3、…、N,输出序列的第一个元素是i,则第j个输出元素是:
A.
i−j−1
B.
i−j
C.
j−i−1
D.
不确定
分数 2
作者 DS课程组
单位 浙江大学
若一个栈的入栈序列为1、2、3、…、N,其输出序列为p1、p2、p3、…、pN。若p1=N,则pi为:
A.
i
B.
n−i
C.
n−i+1
D.
不确定
分数 2
作者 DS课程组
单位 浙江大学
将5个字母ooops
按此顺序入栈,则有多少种不同的出栈顺序可以仍然得到ooops
?
A.
1
B.
3
C.
5
D.
6
分数 2
作者 严冰
单位 浙大城市学院
栈的插入和删除操作在( )进行。
A.
栈顶
B.
栈底
C.
任意位置
D.
指定位置
分数 1
作者 DS课程组
单位 浙江大学
为解决计算机主机与打印机之间速度不匹配问题,通常设置一个打印数据缓冲区,主机将要输出的数据依次写入该缓冲区,而打印机则依次从该缓冲区中取出数据。该缓冲区的逻辑结构应该是?
A.
堆栈
B.
队列
C.
树
D.
图
分数 1
作者 DS课程组
单位 浙江大学
若已知一队列用单向链表表示,该单向链表的当前状态(含3个对象)是:1->2->3
,其中x->y
表示x
的下一节点是y
。此时,如果将对象4
入队,然后队列头的对象出队,则单向链表的状态是:
A.
1->2->3
B.
2->3->4
C.
4->1->2
D.
答案不唯一
分数 2
作者 杨斌
单位 枣庄学院
在一个链队列中,front和rear分别为头指针和尾指针,则插入一个结点s的操作为( )。
A.
front=front->next
B.
s->next=rear;rear=s
C.
rear->next=s;rear=s;
D.
s->next=front;front=s;
分数 2
作者 杨斌
单位 枣庄学院
依次在初始为空的队列中插入元素a,b,c,d以后,紧接着做了两次删除操作,此时的队头元素是( )。
A.
a
B.
b
C.
c
D.
d
分数 2
作者 严冰
单位 浙大城市学院
在一个不带头结点的非空链式队列中,假设f和r分别为队头和队尾指针,则插入s所指的结点运算是( )。
A.
f->next=s; f=s;
B.
r->next=s; r=s;
C.
s->next=s; r=s;
D.
s->next=f; f=s;
分数 2
作者 DS课程组
单位 浙江大学
若用大小为6的数组来实现循环队列,且当前front
和rear
的值分别为0和4。当从队列中删除两个元素,再加入两个元素后,front
和rear
的值分别为多少?
A.
2和0
B.
2和2
C.
2和4
D.
2和6
分数 2
作者 DS课程组
单位 浙江大学
如果循环队列用大小为m
的数组表示,且用队头指针front
和队列元素个数size
代替一般循环队列中的front
和rear
指针来表示队列的范围,那么这样的循环队列可以容纳的元素个数最多为:
A.
m-1
B.
m
C.
m+1
D.
不能确定
分数 2
作者 DS课程组
单位 浙江大学
如果循环队列用大小为m
的数组表示,队头位置为front
、队列元素个数为size
,那么队尾元素位置rear
为:
A.
front+size
B.
front+size-1
C.
(front+size)%m
D.
(front+size-1)%m
分数 2
作者 鲁法明
单位 山东科技大学
设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a11为第一元素,其存储地址为1,每个元素占一个地址空间,则a85的地址为
A.
13
B.
33
C.
18
D.
40
分数 2
作者 鲁法明
单位 山东科技大学
设有数组A[i,j],数组的每个元素长度为3字节,i的值为1 到8 ,j的值为1 到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为()。
A.
BA+141
B.
BA+180
C.
BA+222
D.
BA+225
分数 2
作者 鲁法明
单位 山东科技大学
将一个A[1..100,1..100]的三对角矩阵,按行优先存入一维数组B[1‥298]中,A中元素A6665(即该元素下标i=66,j=65),在B数组中的位置K为()。
A.
198
B.
195
C.
197
D.
199
分数 2
作者 鲁法明
单位 山东科技大学
若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线上所有元素)依次存放于一维数组B[1..(n(n+1))/2]中,则在B中确定aij(i<j)的位置k的关系为()。
A.
i*(i-1)/2+j
B.
j*(j-1)/2+i
C.
i*(i+1)/2+j
D.
j*(j+1)/2+i
分数 2
作者 鲁法明
单位 山东科技大学
已知广义表L=((x,y,z),a,(u,t,w)),从L表中取出原子项t的运算是()。
A.
head(tail(tail(L)))
B.
tail(head(head(tail(L))))
C.
head(tail(head(tail(L))))
D.
head(tail(head(tail(tail(L)))))
分数 2
作者 鲁法明
单位 山东科技大学
广义表A=(a,b,(c,d),(e,(f,g))),则式子Head(Tail(Head(Tail(Tail(A)))))的值为()。
A.
(g)
B.
(d)
C.
c
D.
d
分数 2
作者 鲁法明
单位 山东科技大学
设广义表L=((a,b,c)),则L的长度和深度分别为( )
A.
1和1
B.
1和3
C.
1和2
D.
2和3
分数 1
作者 DS课程组
单位 浙江大学
树最适合于用来表示
A.
有序数据元素
B.
无序数据元素
C.
元素之间无联系的数据
D.
元素之间具有分支层次关系的数据
分数 3
作者 DS课程组
单位 浙江大学
设树T的度为4,其中度为1、2、3、4的结点个数分别为4、2、1、1。则T中有多少个叶子结点?
A.
4
B.
6
C.
8
D.
10
分数 3
作者 鲁法明
单位 山东科技大学
已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。
A.
CBEFDA
B.
FEDCBA
C.
CBEDFA
D.
不定
分数 3
作者 鲁法明
单位 山东科技大学
已知某二叉树的后序遍历序列是dabec, 中序遍历序列是debac , 它的前序遍历是( )。
A.
acbed
B.
decab
C.
deabc
D.
cedba
分数 3
作者 DS课程组
单位 浙江大学
如果一棵非空k(k≥2)叉树T中每个非叶子结点都有k个孩子,则称T为正则k叉树。若T的高度为h(单结点的树h=1),则T的结点数最多为:
A.
(kh−1)/(k−1)
B.
(kh−1−1)/(k−1)
C.
(kh+1−1)/(k−1)
D.
以上都不是
分数 3
作者 DS课程组
单位 浙江大学
如果一棵非空k(k≥2)叉树T中每个非叶子结点都有k个孩子,则称T为正则k叉树。若T的高度为h(单结点的树h=1),则T的结点数最少为:
A.
(kh−1−1)/(k−1)+1
B.
(kh−1)/(k−1)−1
C.
kh
D.
k(h−1)+1
分数 2
作者 考研试卷
单位 浙江大学
要使一棵非空二叉树的先序序列与中序序列相同,其所有非叶结点须满足的条件是:
A.
只有左子树
B.
只有右子树
C.
结点的度均为1
D.
结点的度均为2
分数 3
作者 考研试卷
单位 浙江大学
已知一棵二叉树的树形如下图所示,其后序序列为{ e
, a
, c
, b
, d
, g
, f
}。树中与结点a
同层的结点是:
A.
c
B.
d
C.
f
D.
g
分数 3
作者 陈越
单位 浙江大学
若一棵二叉树的后序遍历序列是{ 1, 3, 2, 6, 5, 7, 4 },中序遍历序列是{ 1, 2, 3, 4, 5, 6, 7 },则下列哪句是错的?
A.
这是一棵完全二叉树
B.
2是1和3的父结点
C.
这是一棵二叉搜索树
D.
7是5的父结点
分数 3
作者 DS课程组
单位 浙江大学
如果一棵非空k(k≥2)叉树T中每个非叶子结点都有k个孩子,则称T为正则k叉树。若T有m个非叶子结点,则T中的叶子结点个数为:
A.
mk
B.
m(k−1)
C.
m(k−1)+1
D.
m(k−1)−1
分数 2
作者 何钦铭
单位 浙江大学
有一个四叉树,度2的结点数为2,度3的结点数为3,度4的结点数为4。问该树的叶结点个数是多少?
A.
10
B.
12
C.
20
D.
21
分数 3
作者 何钦铭
单位 浙江大学
若一棵二叉树的前序遍历序列是{ 4, 2, 1, 3, 6, 5, 7 },中序遍历序列是{ 1, 2, 3, 4, 5, 6, 7 },则下列哪句是错的?
A.
这是一棵完全二叉树
B.
所有的奇数都在叶子结点上
C.
这是一棵二叉搜索树
D.
2是5的父结点
分数 2
作者 DS课程组
单位 浙江大学
按照二叉树的定义,具有3个结点的二叉树有几种?
A.
3
B.
4
C.
5
D.
6
分数 2
作者 DS课程组
单位 浙江大学
任何一棵二叉树的叶结点在先序、中序和后序遍历序列中的相对次序
A.
发生改变
B.
不发生改变
C.
不能确定
D.
以上都不对
分数 2
作者 DS课程组
单位 浙江大学
二叉树中第5层(根的层号为1)上的结点个数最多为:
A.
8
B.
15
C.
16
D.
32
分数 2
作者 DS课程组
单位 浙江大学
先序遍历图示二叉树的结果为
A.
A,B,C,D,H,E,I,F,G
B.
A,B,D,H,I,E,C,F,G
C.
H,D,I,B,E,A,F,C,G
D.
H,I,D,B,E,F,G,A,C
分数 3
作者 DS课程组
单位 浙江大学
三叉树中,度为1的结点有5个,度为2的结点3个,度为3的结点2个,问该树含有几个叶结点?
A.
8
B.
10
C.
12
D.
13
分数 2
作者 DS课程组
单位 浙江大学
某二叉树的中序序列和后序序列正好相反,则该二叉树一定是
A.
空或只有一个结点
B.
高度等于其结点数
C.
任一结点无左孩子
D.
任一结点无右孩子
分数 2
作者 DS课程组
单位 浙江大学
某二叉树的前序和后序遍历序列正好相反,则该二叉树一定是
A.
空或只有一个结点
B.
高度等于其结点数
C.
任一结点无左孩子
D.
任一结点无右孩子
分数 3
作者 DS课程组
单位 浙江大学
设n、m为一棵二叉树上的两个结点,在中序遍历时,n在m前的条件是
A.
n在m左方
B.
n在m右方
C.
n是m祖先
D.
n是m子孙
分数 2
作者 DS课程组
单位 浙江大学
给定二叉树如下图所示。设N代表二叉树的根,L代表根结点的左子树,R代表根结点的右子树。若遍历后的结点序列为3、1、7、5、6、2、4,则其遍历方式是:
A.
NRL
B.
RNL
C.
LRN
D.
RLN
分数 3
作者 DS课程组
单位 浙江大学
设高为h的二叉树(规定叶子结点的高度为1)只有度为0和2的结点,则此类二叉树的最少结点数和最多结点数分别为:
A.
2h, 2h−1
B.
2h−1, 2h−1
C.
2h−1, 2h−1−1
D.
2h−1+1, 2h−1
分数 2
作者 DS课程组
单位 浙江大学
在下述结论中,正确的是:
①只有一个结点的二叉树的度为0;
②二叉树的度为2;
③二叉树的左右子树可任意交换;
④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A.
①④
B.
②④
C.
①②③
D.
②③④
分数 3
作者 何钦铭
单位 浙江大学
具有1102个结点的完全二叉树一定有__个叶子结点。
A.
79
B.
551
C.
1063
D.
不确定
分数 2
作者 DS课程组
单位 浙江大学
若森林F有15条边、25个结点,则F包含树的个数是:
A.
8
B.
9
C.
10
D.
11
分数 3
作者 DS课程组
单位 浙江大学
将森林转换为对应的二叉树,若在二叉树中,结点u是结点v的父结点的父结点,则在原来的森林中,u和v可能具有的关系是:
- 父子关系; 2. 兄弟关系; 3. u的父结点与v的父结点是兄弟关系
A.
只有2
B.
1和2
C.
1和3
D.
1、2和3
分数 2
作者 DS课程组
单位 浙江大学
对于一个有N个结点、K条边的森林,共有几棵树?
A.
N−K
B.
N−K+1
C.
N−K−1
D.
不能确定
分数 2
作者 DS课程组
单位 浙江大学
设森林F中有三棵树,第一、第二、第三棵树的结点个数分别为M1,M2和M3。则与森林F对应的二叉树根结点的右子树上的结点个数是:
A.
M1
B.
M1+M2
C.
M2+M3
D.
M3
分数 3
作者 DS课程组
单位 浙江大学
由若干个二叉树组成的森林F中,叶结点总个数为N,度为2的结点总个数为M,则该集合中二叉树的个数为:
A.
M−N
B.
N−M
C.
N−M−1
D.
无法确定
分数 3
作者 DS课程组
单位 浙江大学
已知一棵完全二叉树的第6层(设根为第1层)有8个叶结点,则该完全二叉树的结点个数最多是:
A.
39
B.
52
C.
111
D.
119
分数 3
作者 DS课程组
单位 浙江大学
在一个用数组表示的完全二叉树中,如果根结点下标为1,那么下标为17和19这两个结点的最近公共祖先结点在哪里(数组下标)? (注:两个结点的“公共祖先结点”是指同时都是这两个结点祖先的结点)
A.
8
B.
4
C.
2
D.
1
分数 3
作者 DS课程组
单位 浙江大学
具有65个结点的完全二叉树其深度为(根的深度为1):
A.
8
B.
7
C.
6
D.
5
分数 2
作者 DS课程组
单位 浙江大学
对N(N≥2)个权值均不相同的字符构造哈夫曼树。下列关于该哈夫曼树的叙述中,错误的是:
A.
树中一定没有度为1的结点
B.
树中两个权值最小的结点一定是兄弟结点
C.
树中任一非叶结点的权值一定不小于下一层任一结点的权值
D.
该树一定是一棵完全二叉树
分数 2
作者 DS课程组
单位 浙江大学
设一段文本中包含字符{a, b, c, d, e},其出现频率相应为{3, 2, 5, 1, 1}。则经过哈夫曼编码后,文本所占字节数为:
A.
40
B.
36
C.
25
D.
12
分数 2
作者 DS课程组
单位 浙江大学
设一段文本中包含4个对象{a,b,c,d},其出现次数相应为{4,2,5,1},则该段文本的哈夫曼编码比采用等长方式的编码节省了多少位数?
A.
0
B.
2
C.
4
D.
5
分数 2
作者 DS课程组
单位 浙江大学
由分别带权为9、2、5、7的四个叶子结点构成一棵哈夫曼树,该树的带权路径长度为:
A.
23
B.
37
C.
44
D.
46
分数 2
作者 考研试卷
单位 浙江大学
已知字符集{ a, b, c, d, e, f, g, h }。若各字符的哈夫曼编码依次是 0100, 10, 0000, 0101, 001, 011, 11, 0001,则编码序列 0100011001001011110101 的译码结果是:
A.
acgabfh
B.
adbagbb
C.
afbeagd
D.
afeefgd
分数 2
作者 严冰
单位 浙大城市学院
若以{4,5,6,3,8}作为叶子节点的权值构造哈夫曼树,则带权路径长度是()。
A.
28
B.
68
C.
55
D.
59
分数 2
作者 严冰
单位 浙大城市学院
下列叙述错误的是()。
A.
一棵哈夫曼树的带权路径长度等于其中所有分支结点的权值之和
B.
当一棵具有n 个叶子结点的二叉树的WPL 值为最小时,称其树为哈夫曼树,其二叉树的形状是唯一的
C.
哈夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近
D.
哈夫曼树的结点个数不能是偶数
分数 2
作者 严冰
单位 浙大城市学院
哈夫曼树是n个带权叶子结点构成的所有二叉树中()最小的二叉树。
A.
权值
B.
高度
C.
带权路径长度
D.
度
分数 2
作者 徐积文
单位 广东东软学院
(neuDS)在哈夫曼树中,任何一个结点它的度都是( )。
A.
0或1
B.
1或2
C.
0或2
D.
0或1或2
分数 3
作者 陈越
单位 浙江大学
若无向图G =(V,E)中含10个顶点,要保证图G在任何情况下都是连通的,则需要的边数最少是:
A.
45
B.
37
C.
36
D.
9
分数 3
作者 陈越
单位 浙江大学
给定一个有向图的邻接表如下图,则该图有__个强连通分量。
A.
4 {{0, 1, 5}, {2}, {3}, {4}}
B.
3 {{2}, {4}, {0, 1, 3, 5}}
C.
1 {0, 1, 2, 3, 4, 5}
D.
1 {0, 5, 1, 3}
分数 1
作者 陈越
单位 浙江大学
给定有向图的邻接矩阵如下:
顶点2(编号从0开始)的出度和入度分别是:
A.
3, 1
B.
1, 3
C.
0, 2
D.
2, 0
分数 2
作者 DS课程组
单位 浙江大学
下面给出的有向图中,有__个强连通分量。
A.
1 ({0,1,2,3,4})
B.
1 ({1,2,3,4})
C.
2 ({1,2,3,4}, {0})
D.
5 ({0}, {1}, {2}, {3}, {4})
分数 1
作者 DS课程组
单位 浙江大学
下面给出的有向图中,各个顶点的入度和出度分别是:
A.
入度: 0, 2, 3, 1, 2; 出度: 3, 2, 1, 1, 1
B.
入度: 3, 2, 1, 1, 1; 出度: 0, 2, 3, 1, 2
C.
入度: 3, 4, 4, 2, 3; 出度: 3, 4, 4, 2, 3
D.
入度: 0, 1, 2, 1, 1; 出度: 3, 2, 1, 1, 1
分数 3
作者 陈越
单位 浙江大学
如果G是一个有36条边的非连通无向图,那么该图顶点个数最少为多少?
A.
7
B.
8
C.
9
D.
10
分数 1
作者 DS课程组
单位 浙江大学
下面关于图的存储的叙述中,哪一个是正确的?
A.
用相邻矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关
B.
用相邻矩阵法存储图,占用的存储空间数只与图中边数有关,而与结点个数无关
C.
用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关
D.
用邻接表法存储图,占用的存储空间数只与图中边数有关,而与结点个数无关
分数 1
作者 DS课程组
单位 浙江大学
关于图的邻接矩阵,下列哪个结论是正确的?
A.
有向图的邻接矩阵总是不对称的
B.
有向图的邻接矩阵可以是对称的,也可以是不对称的
C.
无向图的邻接矩阵总是不对称的
D.
无向图的邻接矩阵可以是不对称的,也可以是对称的
分数 2
作者 DS课程组
单位 浙江大学
设N个顶点E条边的图用邻接表存储,则求每个顶点入度的时间复杂度为:
A.
O(N)
B.
O(N2)
C.
O(N+E)
D.
O(N×E)
分数 2
作者 DS课程组
单位 浙江大学
在一个无向图中,所有顶点的度数之和等于所有边数的多少倍?
A.
1/2
B.
1
C.
2
D.
4
分数 2
作者 DS课程组
单位 浙江大学
在一个有向图中,所有顶点的入度与出度之和等于所有边之和的多少倍?
A.
1/2
B.
1
C.
2
D.
4
分数 1
作者 DS课程组
单位 浙江大学
在任一有向图中,所有顶点的入度之和与所有顶点的出度之和的关系是:
A.
相等
B.
大于等于
C.
小于等于
D.
不确定
分数 1
作者 DS课程组
单位 浙江大学
设无向图的顶点个数为N,则该图最多有多少条边?
A.
N−1
B.
N(N−1)/2
C.
N(N+1)/2
D.
N2
分数 2
作者 DS课程组
单位 浙江大学
下列关于无向连通图特征的叙述中,正确的是:
- 所有顶点的度之和为偶数
- 边数大于顶点个数减1
- 至少有一个顶点的度为1
A.
只有1
B.
只有2
C.
1和2
D.
1和3
分数 3
作者 DS课程组
单位 浙江大学
若无向图G =(V,E)中含7个顶点,要保证图G在任何情况下都是连通的,则需要的边数最少是:
A.
6
B.
15
C.
16
D.
21
分数 2
作者 DS课程组
单位 浙江大学
在N个顶点的无向图中,所有顶点的度之和不会超过顶点数的多少倍?
A.
1
B.
2
C.
(N−1)/2
D.
N−1
分数 2
作者 DS课程组
单位 浙江大学
对于一个具有N个顶点的无向图,要连通所有顶点至少需要多少条边?
A.
N−1
B.
N
C.
N+1
D.
N/2
分数 2
作者 DS课程组
单位 浙江大学
具有N(N>0)个顶点的无向图至多有多少个连通分量?
A.
0
B.
1
C.
N−1
D.
N
分数 2
作者 DS课程组
单位 浙江大学
一个有N个顶点的强连通图至少有多少条边?
A.
N−1
B.
N
C.
N+1
D.
N(N−1)
分数 3
作者 DS课程组
单位 浙江大学
如果G是一个有28条边的非连通无向图,那么该图顶点个数最少为多少?
A.
7
B.
8
C.
9
D.
10
分数 2
作者 DS课程组
单位 浙江大学
对于有向图,其邻接矩阵表示比邻接表表示更易于:
A.
求一个顶点的入度
B.
求一个顶点的出边邻接点
C.
进行图的深度优先遍历
D.
进行图的广度优先遍历
分数 1
作者 DS课程组
单位 浙江大学
对于一个具有N个顶点的无向图,若采用邻接矩阵表示,则该矩阵的大小是:
A.
N−1
B.
N
C.
(N−1)2
D.
N2
分数 1
作者 DS课程组
单位 浙江大学
若一个有向图用邻接矩阵表示,则第i个结点的入度就是:
A.
第i行的元素个数
B.
第i行的非零元素个数
C.
第i列的非零元素个数
D.
第i列的零元素个数
分数 2
作者 DS课程组
单位 浙江大学
下列选项中,不是下图深度优先搜索序列的是:
A.
V1, V5, V4, V3, V2
B.
V1, V3, V2, V5, V4
C.
V1, V2, V5, V4, V3
D.
V1, V2, V3, V4, V5
分数 2
作者 陈越
单位 浙江大学
若某图的深度优先搜索序列是{V1, V4, V0, V3, V2},则下列哪个图不可能对应该序列?
A.
B.
C.
D.
分数 2
作者 陈越
单位 浙江大学
若某图的深度优先搜索序列是{V2, V0, V4, V3, V1},则下列哪个图不可能对应该序列?
A.
B.
C.
D.
分数 4
作者 考研试卷
单位 浙江大学
已知无向图G含有16条边,其中度为4的顶点个数为3,度为3的顶点个数为4,其他顶点的度均小于3。图G所含的顶点个数至少是:
A.
10
B.
11
C.
13
D.
15
分数 2
作者 陈越
单位 浙江大学
给定一有向图的邻接表如下。从顶点V1出发按深度优先搜索法进行遍历,则得到的一种顶点序列为:
A.
V1,V5,V4,V7,V6,V2,V3
B.
V1,V2,V3,V4,V7,V6,V5
C.
V1,V5,V4,V7,V6,V3,V2
D.
V1,V5,V6,V4,V7,V2,V3
分数 1
作者 陈越
单位 浙江大学
图的广度优先遍历类似于二叉树的:
A.
先序遍历
B.
中序遍历
C.
后序遍历
D.
层次遍历
分数 3
作者 DS课程组
单位 浙江大学
给定无向图G,从V0出发进行深度优先遍历访问的边集合为: {(V0,V1), (V0,V4), (V1,V2), (V1,V3), (V4,V5), (V5,V6)}。则下面哪条边不可能出现在G中?
A.
(V0,V2)
B.
(V0,V6)
C.
(V1,V5)
D.
(V4,V6)
分数 2
作者 DS课程组
单位 浙江大学
给定一有向图的邻接表如下。从顶点V1出发按深度优先搜索法进行遍历,则得到的一种顶点序列为:
A.
V1,V2,V3,V5,V4
B.
V1,V3,V4,V5,V2
C.
V1,V4,V3,V5,V2
D.
V1,V2,V4,V5,V3
分数 2
作者 DS课程组
单位 浙江大学
已知一个图的邻接矩阵如下,则从顶点V1出发按深度优先搜索法进行遍历,可能得到的一种顶点序列为:
(感谢湘潭大学朱江老师斧正)
A.
V1,V2,V3,V4,V5,V6
B.
V1,V2,V4,V5,V6,V3
C.
V1,V3,V5,V2,V4,V6
D.
V1,V3,V5,V6,V2,V4
分数 2
作者 DS课程组
单位 浙江大学
如果从无向图的任一顶点出发进行一次深度优先搜索可访问所有顶点,则该图一定是:
A.
连通图
B.
完全图
C.
有回路的图
D.
一棵树
分数 2
作者 DS课程组
单位 浙江大学
在图中自a点开始进行广度优先遍历算法可能得到的结果为:
A.
a, e, d, f, c, b
B.
a, c, f, e, b, d
C.
a, e, b, c, f, d
D.
a, b, e, c, d, f
分数 2
作者 DS课程组
单位 浙江大学
在图中自c点开始进行广度优先遍历算法可能得到的结果为:
A.
c,a,b,e,f,d
B.
c,a,f,d,e,b
C.
c,f,a,d,e,b
D.
c,f,a,b,d,e
分数 2
作者 DS课程组
单位 浙江大学
如果无向图G必须进行两次广度优先搜索才能访问其所有顶点,则下列说法中不正确的是:
A.
G肯定不是完全图
B.
G中一定有回路
C.
G一定不是连通图
D.
G有2个连通分量
分数 3
作者 DS课程组
单位 浙江大学
给定一有向图的邻接表如下。若从v1开始利用此邻接表做广度优先搜索得到的顶点序列为:{v1, v3, v2, v4, v5},则该邻接表中顺序填空的结果应为:
A.
v2, v3, v4
B.
v3, v2, v4
C.
v3, v4, v2
D.
v4, v3, v2
分数 2
作者 DS课程组
单位 浙江大学
给定一有向图的邻接表如下。从顶点V1出发按广度优先搜索法进行遍历,则得到的一种顶点序列为:
A.
V1,V2,V3,V4,V5
B.
V1,V2,V3,V5,V4
C.
V1,V3,V2,V4,V5
D.
V1,V4,V3,V5,V2
分数 2
作者 DS课程组
单位 浙江大学
已知一个图的邻接矩阵如下,则从顶点V1出发按广度优先搜索法进行遍历,可能得到的一种顶点序列为:
A.
V1,V2,V3,V5,V4,V6
B.
V1,V2,V4,V5,V6,V3
C.
V1,V3,V5,V2,V4,V6
D.
V1,V3,V5,V6,V4,V2
分数 2
作者 DS课程组
单位 浙江大学
下列说法不正确的是:
A.
图的遍历是从给定的源点出发每一个顶点仅被访问一次
B.
遍历的基本算法有两种:深度遍历和广度遍历
C.
图的深度遍历是一个递归过程
D.
图的深度遍历不适用于有向图
分数 1
作者 DS课程组
单位 浙江大学
图的深度优先遍历类似于二叉树的:
A.
先序遍历
B.
中序遍历
C.
后序遍历
D.
层次遍历
分数 2
作者 DS课程组
单位 浙江大学
在图中自a点开始进行深度优先遍历算法可能得到的结果为:
A.
a, b, e, c, d, f
B.
a, c, f, e, b, d
C.
a, e, b, c, f, d
D.
a, e, d, f, c, b
分数 3
作者 陈越
单位 浙江大学
给定有权无向图的邻接矩阵如下,其最小生成树的总权重是:
A.
22
B.
20
C.
15
D.
8
分数 3
作者 陈越
单位 浙江大学
给定有权无向图的邻接矩阵如下,其最小生成树的总权重是:
A.
20
B.
22
C.
8
D.
15
分数 3
作者 陈越
单位 浙江大学
给定有权无向图的邻接矩阵如下,其最小生成树的总权重是:
A.
24
B.
23
C.
18
D.
17
分数 3
作者 陈越
单位 浙江大学
给定有权无向图如下。关于其最小生成树,下列哪句是对的?
A.
最小生成树不唯一,其总权重为23
B.
最小生成树唯一,其总权重为20
C.
边(B, F)一定在树中,树的总权重为23
D.
边(H, G)一定在树中,树的总权重为20
分数 3
作者 陈越
单位 浙江大学
给定有权无向图如下。关于其最小生成树,下列哪句是对的?
A.
边(B, A)一定在树中,树的总权重为23
B.
边(D, C)一定在树中,树的总权重为20
C.
最小生成树不唯一,其总权重为23
D.
最小生成树唯一,其总权重为20
分数 1
作者 DS课程组
单位 浙江大学
我们用一个有向图来表示航空公司所有航班的航线。下列哪种算法最适合解决找给定两城市间最经济的飞行路线问题?
A.
Dijkstra算法
B.
Kruskal算法
C.
深度优先搜索
D.
拓扑排序算法
分数 1
作者 DS课程组
单位 浙江大学
数据结构中Dijkstra算法用来解决哪个问题?
A.
关键路径
B.
最短路径
C.
拓扑排序
D.
字符串匹配
分数 3
作者 DS课程组
单位 浙江大学
若要求在找到从S
到其他顶点最短路的同时,还给出不同的最短路的条数,我们可以将Dijkstra算法略作修改,增加一个count[]
数组:count[V]
记录S
到顶点V
的最短路径有多少条。则count[V]
应该被初始化为:
A.
count[S]=1;
对于其他顶点V
则令count[V]=0
B.
count[S]=0;
对于其他顶点V
则令count[V]=1
C.
对所有顶点都有count[V]=1
D.
对所有顶点都有count[V]=0
分数 2
作者 DS课程组
单位 浙江大学
使用迪杰斯特拉(Dijkstra)算法求下图中从顶点1到其他各顶点的最短路径,依次得到的各最短路径的目标顶点是:
A.
5, 2, 3, 4, 6
B.
5, 2, 3, 6, 4
C.
5, 2, 4, 3, 6
D.
5, 2, 6, 3, 4
分数 3
作者 DS课程组
单位 浙江大学
在一个有权无向图中,如果顶点b到顶点a的最短路径长度是10,顶点c与顶点b之间存在一条长度为3的边。那么下列说法中有几句是正确的?
- c与a的最短路径长度就是13
- c与a的最短路径长度就是7
- c与a的最短路径长度不超过13
- c与a的最短路径不小于7
A.
1句
B.
2句
C.
3句
D.
4句
分数 1
作者 DS课程组
单位 浙江大学
在AOE网中,什么是关键路径?
A.
最短回路
B.
最长回路
C.
从第一个事件到最后一个事件的最短路径
D.
从第一个事件到最后一个事件的最长路径
分数 1
作者 DS课程组
单位 浙江大学
在拓扑排序算法中用堆栈和用队列产生的结果会不同吗?
A.
是的肯定不同
B.
肯定是相同的
C.
有可能会不同
D.
以上全不对
分数 2
作者 陈越
单位 浙江大学
下图为一个AOV网,其可能的拓扑有序序列为:
A.
ABCDFEG
B.
ADFCEBG
C.
ACDFBEG
D.
ABDCEFG
分数 1
作者 DS课程组
单位 浙江大学
若将n个顶点e条弧的有向图采用邻接表存储,则拓扑排序算法的时间复杂度是:
A.
O(n)
B.
O(n+e)
C.
O(n2)
D.
O(n×e)
分数 2
作者 DS课程组
单位 浙江大学
对下图进行拓扑排序,可以得到不同的拓扑序列的个数是:
A.
4
B.
3
C.
2
D.
1
分数 2
作者 DS课程组
单位 浙江大学
已知有向图G=(V, E),其中V = {v1, v2, v3, v4, v5, v6}
,E = {<v1,v2>, <v1,v4>, <v2,v6>, <v3,v1>, <v3,v4>, <v4,v5>, <v5,v2>, <v5,v6>}
。G的拓扑序列是:
A.
v3, v1, v4, v5, v2, v6
B.
v3, v4, v1, v5, v2, v6
C.
v1, v3, v4, v5, v2, v6
D.
v1, v4, v3, v5, v2, v6
分数 2
作者 DS课程组
单位 浙江大学
已知一个长度为16的顺序表L,其元素按关键字有序排列。若采用二分查找法查找一个L中不存在的元素,则关键字的比较次数最多是:
A.
4
B.
5
C.
6
D.
7
分数 2
作者 DS课程组
单位 浙江大学
用二分查找从100个有序整数中查找某数,最坏情况下需要比较的次数是:
A.
7
B.
10
C.
50
D.
99
分数 2
作者 DS课程组
单位 浙江大学
在有n(n>1000)个元素的升序数组A
中查找关键字x。查找算法的伪代码如下所示:
k = 0;
while ( k<n 且 A[k]<x ) k = k+3;
if ( k<n 且 A[k]==x ) 查找成功;
else if ( k-1<n 且 A[k-1]==x ) 查找成功;
else if ( k-2<n 且 A[k-2]==x ) 查找成功;
else 查找失败;
本算法与二分查找(折半查找)算法相比,有可能具有更少比较次数的情形是:
A.
当x不在数组中
B.
当x接近数组开头处
C.
当x接近数组结尾处
D.
当x位于数组中间位置
分数 4
作者 考研试卷
单位 浙江大学
下列二叉树中,可能成为折半查找判定树(不含外部结点)的是:
A.
B.
C.
D.
分数 1
作者 何钦铭
单位 浙江大学
若二叉搜索树是有N个结点的完全二叉树,则不正确的说法是:
A.
所有结点的平均查找效率是O(logN)
B.
最小值一定在叶结点上
C.
最大值一定在叶结点上
D.
中位值结点在根结点或根的左子树上
分数 3
作者 陈越
单位 浙江大学
将{ 32, 2, 15, 65, 28, 10 }依次插入初始为空的二叉搜索树。则该树的前序遍历结果是:
A.
2, 10, 15, 28, 32, 65
B.
32, 2, 10, 15, 28, 65
C.
10, 28, 15, 2, 65, 32
D.
32, 2, 15, 10, 28, 65
分数 3
作者 何钦铭
单位 浙江大学
将{ 5, 11, 13, 1, 3, 6 }依次插入初始为空的二叉搜索树。则该树的后序遍历结果是:
A.
3, 1, 5, 6, 13, 11
B.
3, 1, 6, 13, 11, 5
C.
1, 3, 11, 6, 13, 5
D.
1, 3, 5, 6, 13, 11
分数 1
作者 DS课程组
单位 浙江大学
对二叉搜索树进行什么遍历可以得到从小到大的排序序列?
A.
前序遍历
B.
后序遍历
C.
中序遍历
D.
层次遍历
分数 1
作者 DS课程组
单位 浙江大学
若二叉搜索树是有N个结点的完全二叉树,则不正确的说法是:
A.
平均查找效率是O(logN)
B.
最大值一定在最后一层
C.
最小值一定在叶结点上
D.
中位值结点在根结点或根的左子树上
分数 2
作者 DS课程组
单位 浙江大学
已知8个数据元素为(34,76,45,18,26,54,92,65),按照依次插入结点的方法生成一棵二叉搜索树后,最后两层上的结点总数为:
A.
1
B.
2
C.
3
D.
4
分数 2
作者 严冰
单位 浙大城市学院
下列叙述正确的是()。
A.
在任意一棵非空二叉搜索树,删除某结点后又将其插入,则所得二叉搜索树与删除前原二叉搜索树相同。
B.
二叉树中除叶结点外, 任一结点X,其左子树根结点的值小于该结点(X)的值;其右子树根结点的值≥该结点(X)的值,则此二叉树一定是二叉搜索树。
C.
虽然给出关键字序列的顺序不一样,但依次生成的二叉搜索树却是一样的。
D.
在二叉搜索树中插入一个新结点,总是插入到最下层,作为新的叶子结点。
分数 1
作者 DS课程组
单位 浙江大学
AVL树是一种平衡的二叉搜索树,树中任一结点具有下列哪一特性:
A.
左、右子树的高度均相同
B.
左、右子树高度差的绝对值不超过1
C.
左子树的高度均大于右子树的高度
D.
左子树的高度均小于右子树的高度
分数 1
作者 DS课程组
单位 浙江大学
下列二叉搜索树中,满足平衡二叉树定义的是:
A.
B.
C.
D.
分数 2
作者 DS课程组
单位 浙江大学
在下列所示的平衡二叉树中,插入关键字48后得到一棵新平衡二叉树。在新平衡二叉树中,关键字37所在结点的左、右子结点中保存的关键字分别是:
A.
13、48
B.
24、48
C.
24、53
D.
24、90
分数 2
作者 DS课程组
单位 浙江大学
12个结点的AVL树的最大深度是?
A.
3
B.
4
C.
5
D.
6
分数 3
作者 DS课程组
单位 浙江大学
若AVL树的深度是6(空树的深度定义为-1),则该树的最少结点数是:
A.
13
B.
17
C.
20
D.
33
分数 3
作者 陈越
单位 浙江大学
如果AVL树的深度为6(空树的深度定义为−1),则此树最少有多少个结点?
A.
12
B.
20
C.
33
D.
64
分数 2
作者 徐镜春
单位 浙江大学
将 7, 8, 9, 2, 3, 5, 6, 4 顺序插入一棵初始为空的AVL树。下列句子中哪句是错的?
A.
7 是根结点
B.
2 和 5 是兄弟
C.
有2个结点的平衡因子为-1
D.
3 是 4 的父结点
分数 2
作者 何钦铭
单位 浙江大学
将一系列数字顺序一个个插入一棵初始为空的AVL树。下面哪个系列的第一次旋转是“右-左”双旋?
A.
1,2,3,4,5,6
B.
6,5,4,3,2,1
C.
4,2,5,6,3,1
D.
3,1,4,6,5,2
分数 3
作者 陈越
单位 浙江大学
若一棵AVL树有 28 个结点,则该树的最大深度为__。空树的深度定义为0。
A.
4
B.
5
C.
6
D.
7
分数 2
作者 何钦铭
单位 浙江大学
将 1, 2, 3, 6, 5, 4 顺序一个个插入一棵初始为空的AVL树,会经历下列哪些旋转?
A.
两个“右-右”旋和一个“右-左”旋
B.
一个“右-右”旋、一个“右-左”旋、一个“左-右”旋
C.
一个“右-右”旋和两个“右-左”旋
D.
两个“右-右”旋和一个“左-右”旋
分数 1
作者 DS课程组
单位 浙江大学
在散列表中,所谓同义词就是:
A.
两个意义相近的单词
B.
具有相同散列地址的两个元素
C.
被映射到不同散列地址的一个元素
D.
被不同散列函数映射到同一地址的两个元素
分数 1
作者 DS课程组
单位 浙江大学
在下列查找的方法中,平均查找长度与结点个数无关的查找方法是:
A.
顺序查找
B.
二分法
C.
利用哈希(散列)表
D.
利用二叉搜索树
分数 1
作者 DS课程组
单位 浙江大学
对包含N个元素的散列表进行查找,平均查找长度为:
A.
O(1)
B.
O(logN)
C.
O(N)
D.
不确定
分数 2
作者 DS课程组
单位 浙江大学
将M个元素存入用长度为S的数组表示的散列表,则该表的装填因子为:
A.
S+M
B.
M−S
C.
M×S
D.
M/S
分数 1
作者 DS课程组
单位 浙江大学
散列冲突可以被描述为:
A.
两个元素除了有不同键值,其它都相同
B.
两个有不同数据的元素具有相同的键值
C.
两个有不同键值的元素具有相同的散列地址
D.
两个有相同键值的元素具有不同的散列地址
分数 1
作者 DS课程组
单位 浙江大学
将10个元素散列到100000个单元的哈希表中,是否一定产生冲突?
A.
一定会
B.
可能会
C.
一定不会
D.
有万分之一的可能会
分数 2
作者 DS课程组
单位 浙江大学
设散列表的地址区间为[0,16],散列函数为H(Key)=Key%17。采用线性探测法处理冲突,并将关键字序列{ 26,25,72,38,8,18,59 }依次存储到散列表中。元素59存放在散列表中的地址是:
A.
8
B.
9
C.
10
D.
11
分数 1
作者 DS课程组
单位 浙江大学
采用线性探测法解决冲突时所产生的一系列后继散列地址:
A.
必须大于等于原散列地址
B.
必须小于等于原散列地址
C.
可以大于或小于但不等于原散列地址
D.
对地址在何处没有限制
分数 3
作者 DS课程组
单位 浙江大学
将元素序列{18,23,11,20,2,7,27,33,42,15}按顺序插入一个初始为空的、大小为11的散列表中。散列函数为:H(Key)=Key%11,采用线性探测法处理冲突。问:当第一次发现有冲突时,散列表的装填因子大约是多少?
A.
0.27
B.
0.45
C.
0.64
D.
0.73
分数 2
作者 DS课程组
单位 浙江大学
给定散列表大小为11,散列函数为H(Key)=Key%11。按照线性探测冲突解决策略连续插入散列值相同的4个元素。问:此时该散列表的平均不成功查找次数是多少?
A.
1
B.
4/11
C.
21/11
D.
不确定
分数 2
作者 DS课程组
单位 浙江大学
从一个具有N个结点的单链表中查找其值等于X的结点时,在查找成功的情况下,需平均比较多少个结点?
A.
N/2
B.
N
C.
(N−1)/2
D.
(N+1)/2
分数 3
作者 DS课程组
单位 浙江大学
设数字 {4371, 1323, 6173, 4199, 4344, 9679, 1989} 在大小为10的散列表中根据散列函数 h(X)=X%10得到的下标对应为 {1, 3, 4, 9, 5, 0, 2}。那么继续用散列函数 “h(X)=X%表长”实施再散列并用线性探测法解决冲突后,它们的下标变为:
A.
11, 3, 13, 19, 4, 0, 9
B.
1, 3, 4, 9, 5, 0, 2
C.
1, 12, 9, 13, 20, 19, 11
D.
1, 12, 17, 0, 13, 8, 14
分数 1
作者 DS课程组
单位 浙江大学
下列叙述中,不符合m阶B树定义要求的是:
A.
叶结点之间通过指针链接
B.
根结点最多有m棵子树
C.
所有叶结点都在同一层上
D.
各结点内关键字均升序或降序排列
分数 2
作者 DS课程组
单位 浙江大学
127阶B-树中除根结点外所有非终端结点至少有多少棵子树?
A.
2
B.
63
C.
64
D.
126
分数 1
作者 DS课程组
单位 浙江大学
B+树不同于B树的特点之一是:
A.
能支持顺序查找
B.
结点中含有关键字
C.
根结点至少有两个分支
D.
所有叶结点都在同一层上
分数 2
作者 陈越
单位 浙江大学
从下图的2-3树中删除9。则下列句子中哪句是错的?
A.
根结点是满的
B.
根结点存的第二个键值是 6
C.
6 和 8 存在同一个结点里
D.
6 和 5 存在同一个结点里
分数 1
作者 陈越
单位 浙江大学
下列关于M阶B+树的说法,哪一句是对的?
A.
根结点一定有2到M个孩子
B.
不是所有的叶结点都有同样的深度
C.
叶结点和非叶结点中存的有一些键值是一样的
D.
所有非叶结点都有⌈M/2⌉到M个孩子
分数 2
作者 陈越
单位 浙江大学
将{2, 10, 8, 7, 0, 6, 9, 12}插入一棵初始为空的2-3树(用简单分裂解决溢出),然后再删除8。则下列关于结果树的陈述中哪句是错的?
(鸣谢集美大学李金源同学修正)
A.
包含 9 的结点的父节点有3个孩子
B.
共有4个叶结点
C.
根结点存的第一个值是6
D.
9 和 10 在同一个结点里
分数 2
作者 DS课程组
单位 浙江大学
对一组包含10个元素的非递减有序序列,采用直接插入排序排成非递增序列,其可能的比较次数和移动次数分别是:
A.
100, 100
B.
100, 54
C.
54, 63
D.
45, 44
分数 2
作者 陈越
单位 浙江大学
设有1000个元素的有序序列,如果用二分插入排序再插入一个元素,则最大比较次数是:
A.
1000
B.
999
C.
500
D.
10
分数 2
作者 DS课程组
单位 浙江大学
对于序列{ 49,38,65,97,76,13,27,50 },按由小到大进行排序,下面哪一个是初始步长为4的希尔排序法第一趟的结果?
A.
13,27,38,49,50,65,76,97
B.
49,13,27,50,76,38,65,97
C.
49,76,65,13,27,50,97,38
D.
97,76,65,50,49,38,27,13
分数 2
作者 DS课程组
单位 浙江大学
给定初始待排序列{ 15,9,7,8,20,-1,4 }。如果希尔排序第一趟结束后得到序列为{ 15,-1,4,8,20,9,7 },则该趟增量为:
A.
1
B.
2
C.
3
D.
4
分数 1
作者 DS课程组
单位 浙江大学
对N个不同的数据采用冒泡算法进行从大到小的排序,下面哪种情况下肯定交换元素次数最多?
A.
从小到大排好的
B.
从大到小排好的
C.
元素无序
D.
元素基本有序
分数 2
作者 DS课程组
单位 浙江大学
对于7个数进行冒泡排序,需要进行的比较次数为:
A.
7
B.
14
C.
21
D.
49
分数 2
作者 DS课程组
单位 浙江大学
采用递归方式对顺序表进行快速排序,下列关于递归次数的叙述中,正确的是:
A.
每次划分后,先处理较长的分区可以减少递归次数
B.
每次划分后,先处理较短的分区可以减少递归次数
C.
递归次数与每次划分后得到的分区处理顺序无关
D.
递归次数与初始数据的排列次序无关
分数 1
作者 DS课程组
单位 浙江大学
对N个记录进行快速排序,在最坏的情况下,其时间复杂度是:
A.
O(N)
B.
O(NlogN)
C.
O(N2)
D.
O(N2logN)
分数 2
作者 DS课程组
单位 浙江大学
有组记录的排序码为{46,79,56,38,40,84 },采用快速排序(以位于最左位置的对象为基准而)得到的第一次划分结果为:
A.
{38,46,79,56,40,84}
B.
{38,79,56,46,40,84}
C.
{38,46,56,79,40,84}
D.
{40,38,46,56,79,84}
分数 2
作者 DS课程组
单位 浙江大学
在快速排序的一趟划分过程中,当遇到与基准数相等的元素时,如果左右指针都不停止移动,那么当所有元素都相等时,算法的时间复杂度是多少?
A.
O(logN)
B.
O(N)
C.
O(NlogN)
D.
O(N2)
分数 2
作者 DS课程组
单位 浙江大学
在快速排序的一趟划分过程中,当遇到与基准数相等的元素时,如果左指针停止移动,而右指针在同样情况下却不停止移动,那么当所有元素都相等时,算法的时间复杂度是多少?
A.
O(logN)
B.
O(N)
C.
O(NlogN)
D.
O(N2)
分数 1
作者 DS课程组
单位 浙江大学
对N个记录进行归并排序,归并趟数的数量级是:
A.
O(logN)
B.
O(N)
C.
O(NlogN)
D.
O(N2)
分数 1
作者 DS课程组
单位 浙江大学
对N个记录进行归并排序,空间复杂度为:
A.
O(logN)
B.
O(N)
C.
O(NlogN)
D.
O(N2)
分数 1
作者 DS课程组
单位 浙江大学
对N个元素采用简单选择排序,比较次数和移动次数分别为:
A.
O(N2), O(N)
B.
O(N), O(logN)
C.
O(logN), O(N2)
D.
O(NlogN), O(NlogN)
分数 2
作者 DS课程组
单位 浙江大学
对于10个数的简单选择排序,最坏情况下需要交换元素的次数为:
A.
9
B.
36
C.
45
D.
100
分数 2
作者 DS课程组
单位 浙江大学
有组记录的排序码为{ 46,79,56,38,40,84 },则利用堆排序的方法建立的初始堆为:
A.
79,46,56,38,40,80
B.
84,79,56,46,40,38
C.
84,56,79,40,46,38
D.
84,79,56,38,40,46
分数 1
作者 DS课程组
单位 浙江大学
对N个记录进行堆排序,最坏的情况下时间复杂度是:
A.
O(logN)
B.
O(N)
C.
O(NlogN)
D.
O(N2)
分数 1
作者 DS课程组
单位 浙江大学
对N个记录进行堆排序,需要的额外空间为:
A.
O(1)
B.
O(logN)
C.
O(N)
D.
O(NlogN)
分数 2
作者 DS课程组
单位 浙江大学
给出关键字序列{ 321,156,57,46,28,7,331,33,34,63 },下面哪个选择是按次位优先(LSD)链式基数排序进行了一趟分配和收集的结果?
A.
→331→321→33→63→34→156→46→57→7→28
B.
→321→331→33→63→34→156→46→57→7→28
C.
→156→28→321→331→33→34→46→57→63→7
D.
→57→46→28→7→33→34→63→156→321→331
分数 2
作者 DS课程组
单位 浙江大学
对给定序列{ 110,119,7,911,114,120,122 }采用次位优先(LSD)的基数排序,则两趟收集后的结果为:
A.
7, 110, 119, 114, 911, 120, 122
B.
7, 110, 119, 114, 911, 122, 120
C.
7, 110, 911, 114, 119, 120, 122
D.
110, 120, 911, 122, 114, 7, 119
分数 2
作者 DS课程组
单位 浙江大学
给出关键字序列{ 431, 56, 57, 46, 28, 7, 331, 33, 24, 63 },下面哪个选择是按次位优先(LSD)链式基数排序进行了一趟分配和收集的结果?
A.
→331→431→33→63→24→56→46→57→7→28
B.
→56→28→431→331→33→24→46→57→63→7
C.
→431→331→33→63→24→56→46→57→7→28
D.
→57→46→28→7→33→24→63→56→431→331
分数 2
作者 徐积文
单位 浙江大学
(neuDS)设主串的长度为n,模式串的长度为m,则串匹配的KMP算法时间复杂度是( )。
A.
O(m)
B.
O(n)
C.
O(n + m)
D.
O(n×m)
分数 2
作者 鲁法明
单位 山东科技大学
串 ‘ababaaababaa’ 的next数组为:
A.
012345678999
B.
012121111212
C.
011234223456
D.
0123012322345
分数 3
作者 鲁法明
单位 山东科技大学
字符串‘ababaabab’ 的nextval 为:
A.
(0,1,0,1,04,1,0,1)
B.
(0,1,0,1,0,2,1,0,1)
C.
(0,1,0,1,0,0,0,1,1)
D.
(0,1,0,1,0,1,0,1,1 )
分数 2
作者 杨红梅
单位 山东科技大学
若查找每个记录的概率均等,则在具有n个记录的连续顺序文件中采用顺序查找法查找一个记录,其平均查找长度ASL为( )。
A.
(n-1)/2
B.
n/2
C.
(n+1)/2
D.
n
分数 2
作者 杨红梅
单位 山东科技大学
对N个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为( )
A.
(N+1)/2
B.
N/2
C.
N
D.
[(1+N)N ]/2
分数 2
作者 杨红梅
单位 山东科技大学
下面关于二分查找的叙述正确的是 ( )
A.
表必须有序,表可以顺序方式存储,也可以链表方式存储
B.
表必须有序且表中数据必须是整型,实型或字符型
C.
表必须有序,而且只能从小到大排列
D.
表必须有序,且表只能以顺序方式存储
分数 2
作者 杨红梅
单位 山东科技大学
对线性表进行二分查找时,要求线性表必须( )
A.
以顺序方式存储
B.
以顺序方式存储,且数据元素有序
C.
以链接方式存储
D.
以链接方式存储,且数据元素有序
分数 2
作者 杨红梅
单位 山东科技大学
适用于折半查找的表的存储方式及元素排列要求为( )
A.
链接方式存储,元素无序
B.
链接方式存储,元素有序
C.
顺序方式存储,元素无序
D.
顺序方式存储,元素有序
分数 2
作者 杨红梅
单位 山东科技大学
用二分(对半)查找表的元素的速度比用顺序法( )
A.
必然快
B.
必然慢
C.
相等
D.
不能确定
分数 2
作者 杨红梅
单位 山东科技大学
当在一个有序的顺序存储表上查找一个数据时,即可用折半查找,也可用顺序查找,但前者比后者的查找速度
A.
必定快
B.
不一定
C.
在大部分情况下要快
D.
取决于表递增还是递减
分数 2
作者 杨红梅
单位 山东科技大学
具有12个关键字的有序表,折半查找的平均查找长度( )
A.
3.1
B.
4
C.
2.5
D.
5
分数 2
作者 杨红梅
单位 山东科技大学
折半查找的时间复杂性为( )
A.
O(n2)
B.
O(n)
C.
O(nlogn)
D.
O(logn)
分数 2
作者 杨红梅
单位 山东科技大学
当采用分快查找时,数据的组织方式为 ( )
A.
数据分成若干块,每块内数据有序
B.
数据分成若干块,每块内数据不必有序,但块间必须有序,每块内最大(或最小)的数据组成索引块
C.
数据分成若干块,每块内数据有序,每块内最大(或最小)的数据组成索引块
D.
数据分成若干块,每块(除最后一块外)中数据个数需相同
分数 2
作者 杨红梅
单位 山东科技大学
如果要求一个线性表既能较快的查找,又能适应动态变化的要求,则可采用( )查找法。
A.
分快查找
B.
顺序查找
C.
折半查找
D.
基于属性
分数 2
作者 杨红梅
单位 山东科技大学
既希望较快的查找又便于线性表动态变化的查找方法是 ( )
A.
顺序查找
B.
折半查找
C.
索引顺序查找
D.
哈希法查找
分数 2
作者 杨红梅
单位 山东科技大学
分别以下列序列构造二叉排序树,与用其它三个序列所构造的结果不同的是( )
A.
(100,80, 90, 60, 120,110,130)
B.
(100,120,110,130,80, 60, 90)
C.
(100,60, 80, 90, 120,110,130)
D.
(100,80, 60, 90, 120,130,110)
分数 2
作者 杨红梅
单位 山东科技大学
在平衡二叉树中插入一个结点后造成了不平衡,设最低的不平衡结点为A,并已知A的左孩子的平衡因子为0右孩子的平衡因子为1,则应作( ) 型调整以使其平衡。
A.
LL
B.
LR
C.
RL
D.
RR
分数 2
作者 杨红梅
单位 山东科技大学
下列关于m阶B-树的说法错误的是( )
A.
根结点至多有m棵子树
B.
所有叶子都在同一层次上
C.
非叶结点至少有m/2 (m为偶数)或m/2+1(m为奇数)棵子树
D.
根结点中的数据是有序的
分数 2
作者 杨红梅
单位 山东科技大学
下面关于m阶B树说法正确的是( )
①每个结点至少有两棵非空子树;
②树中每个结点至多有m一1个关键字;
③所有叶子在同一层上;
④当插入一个数据项引起B树结点分裂后,树长高一层。
A.
①②③
B.
②③
C.
②③④
D.
③
分数 2
作者 杨红梅
单位 山东科技大学
下面关于B和B+树的叙述中,不正确的是( )
A.
B树和B+树都是平衡的多叉树。
B.
B树和B+树都可用于文件的索引结构。
C.
B树和B+树都能有效地支持顺序检索。
D.
B树和B+树都能有效地支持随机检索。
分数 2
作者 杨红梅
单位 山东科技大学
m阶B-树是一棵( )
A.
m叉排序树
B.
m叉平衡排序树
C.
m-1叉平衡排序树
D.
m+1叉平衡排序树
分数 2
作者 杨红梅
单位 山东科技大学
设有一组记录的关键字为{19,14,23,1,68,20,84,27,55,11,10,79},用链地址法构造散列表,散列函数为H(key)=key MOD 13,散列地址为1的链中有( )个记录。
A.
1
B.
2
C.
3
D.
4
分数 2
作者 杨红梅
单位 山东科技大学
下面关于哈希(Hash,杂凑)查找的说法正确的是( )
A.
哈希函数构造的越复杂越好,因为这样随机性好,冲突小
B.
除留余数法是所有哈希函数中最好的
C.
不存在特别好与坏的哈希函数,要视情况而定
D.
若需在哈希表中删去一个元素,不管用何种方法解决冲突都只要简单的将该元素删去即可
分数 2
作者 杨红梅
单位 山东科技大学
关于杂凑查找说法不正确的有几个( )
(1)采用链地址法解决冲突时,查找一个元素的时间是相同的
(2)采用链地址法解决冲突时,若插入规定总是在链首,则插入任一个元素的时间是相同的
(3)用链地址法解决冲突易引起聚集现象
(4)再哈希法不易产生聚集
A.
1
B.
2
C.
3
D.
4
分数 2
作者 杨红梅
单位 山东科技大学
设哈希表长为14,哈希函数是H(key)=key%11,表中已有数据的关键字为15,38,61,84共四个,现要将关键字为49的结点加到表中,用二次探测再散列法解决冲突,则放入的位置是( )
A.
8
B.
3
C.
5
D.
9
分数 2
作者 杨红梅
单位 山东科技大学
假定有k个关键字互为同义词,若用线性探测法把这k个关键字存入散列表中,至少要进行多少次探测?( )
A.
k-1次
B.
k次
C.
k+1次
D.
k(k+1)/2次
分数 2
作者 杨红梅
单位 山东科技大学
哈希查找中k个关键字具有同一哈希值,若用线性探测法将这k个关键字对应的记录存入哈希表中,至少要进行( )次探测。
A.
k
B.
k+1
C.
k(k+1)/2
D.
1+k(k+1)/2
分数 2
作者 杨红梅
单位 山东科技大学
散列函数有一个共同的性质,即函数值应当以( )取其值域的每个值。
A.
最大概率
B.
最小概率
C.
平均概率
D.
同等概率
分数 2
作者 杨红梅
单位 山东科技大学
将10个元素散列到100000个单元的哈希表中,则( )产生冲突。
A.
一定会
B.
一定不会
C.
仍可能会
我为人人-数据结构共享题库-考研1800-III
分数 2
作者 卫文学
单位 山东科技大学
图中有关路径的定义是( )。
A.
由顶点和相邻顶点序偶构成的边所形成的序列
B.
由不同顶点所形成的序列
C.
由不同边所形成的序列
D.
上述定义都不是
分数 2
作者 卫文学
单位 山东科技大学
设无向图的顶点个数为n,则该图最多有( )条边。
A.
n-1
B.
n(n-1)/2
C.
n(n+1)/2
D.
0
分数 2
作者 卫文学
单位 山东科技大学
一个n个顶点的连通无向图,其边的个数至少为( )。
A.
n-1
B.
n
C.
n+1
D.
n log n
分数 2
作者 卫文学
单位 山东科技大学
要连通具有n个顶点的有向图,至少需要( )条边。
A.
n-1
B.
n
C.
n+1
D.
2n
分数 2
作者 卫文学
单位 山东科技大学
n个结点的完全有向图含有边的数目( )。
A.
n*n
B.
n(n+1)
C.
n/2
D.
n*(n-1)
分数 1
作者 卫文学
单位 山东科技大学
一个有n个结点的图,最少有( )个连通分量。
A.
0
B.
1
C.
n-1
D.
n
分数 1
作者 卫文学
单位 山东科技大学
一个有n个结点的图,最多有( )个连通分量。
A.
0
B.
1
C.
n-1
D.
n
分数 1
作者 卫文学
单位 山东科技大学
在一个无向图中,所有顶点的度数之和等于所有边数( )倍。
A.
1/2
B.
2
C.
1
D.
4
分数 1
作者 卫文学
单位 山东科技大学
在一个有向图中,所有顶点的入度之和等于所有顶点出度之和的( )倍。
A.
1/2
B.
2
C.
1
D.
4
分数 2
作者 卫文学
单位 山东科技大学
用有向无环图描述表达式(A+B)*((A+B)/A),至少需要顶点的数目为( )。
A.
5
B.
6
C.
8
D.
9
分数 2
作者 卫文学
单位 山东科技大学
用DFS遍历一个无环有向图,并在DFS算法退栈返回时打印相应的顶点,则输出的顶点序列是( )。
A.
逆拓扑有序
B.
拓扑有序
C.
无序的
分数 1
作者 卫文学
单位 山东科技大学
下面结构中最适于表示稀疏无向图的是( ) 。
A.
邻接矩阵
B.
逆邻接表
C.
邻接多重表
D.
十字链表
E.
邻接表
分数 2
作者 卫文学
单位 山东科技大学
下列哪一种图的邻接矩阵是对称矩阵?( )
A.
有向图
B.
无向图
C.
AOV网
D.
AOE网
分数 1
作者 卫文学
单位 山东科技大学
从邻接矩阵
可以看出,该图共有( )个顶点。
A.
9
B.
3
C.
6
D.
1
E.
以上答案均不正确
分数 1
作者 卫文学
单位 山东科技大学
从邻接矩阵
可以看出,如果是有向图该图共有( ) 条弧。
A.
5
B.
4
C.
3
D.
2
E.
以上答案均不正确
分数 1
作者 卫文学
单位 山东科技大学
从邻接矩阵
可以看出,如果是无向图,则共有( )条边。
A.
5
B.
4
C.
3
D.
2
E.
以上答案均不正确
分数 2
作者 卫文学
单位 山东科技大学
当一个有N个顶点的图用邻接矩阵A表示时,顶点Vi的度是( )。
A.
B.
C.
D.
分数 2
作者 卫文学
单位 山东科技大学
用相邻矩阵A表示图,判定任意两个顶点Vi和Vj之间是否有长度为m 的路径相连,则只要检查( )的第i行第j列的元素是否为零即可。
A.
mA
B.
A
C.
Am
D.
Am-1
分数 2
作者 卫文学
单位 山东科技大学
下列说法不正确的是( )。
A.
图的遍历是从给定的源点出发每一个顶点仅被访问一次
B.
遍历的基本算法有两种:深度遍历和广度遍历
C.
图的深度遍历不适用于有向图
D.
图的深度遍历是一个递归过程
分数 2
作者 卫文学
单位 山东科技大学
无向图G=(V,E),其中:V={a,b,c,d,e,f},E={(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)},对该图进行深度优先遍历,得到的顶点序列正确的是( )。
A.
a,b,e,c,d,f
B.
a,c,f,e,b,d
C.
a,e,b,c,f,d
D.
a,e,d,f,c,b
分数 2
作者 卫文学
单位 山东科技大学
设图如所示,在下面的5个序列中,符合深度优先遍历的序列有多少?( )
a e b d f c
a c f d e b
a e d f c b
a e f d c b
a e f d b c
A.
5个
B.
4个
C.
3个
D.
2个
分数 1
作者 卫文学
单位 山东科技大学
下图中给出由7个顶点组成的无向图。从顶点1出发,对它进行深度优先遍历得到的序列是( )。
A.
1354267
B.
1347652
C.
1534276
D.
1247653
E.
以上答案均不正确
分数 1
作者 卫文学
单位 山东科技大学
下图中给出由7个顶点组成的无向图。进行广度优先遍历得到的顶点序列是( )。
A.
1534267
B.
1726453
C.
l354276
D.
1247653
E.
以上答案均不正确
分数 2
作者 卫文学
单位 山东科技大学
在图采用邻接表存储时,求最小生成树的 Prim 算法的时间复杂度为( )。
A.
O(n)
B.
O(n+e)
C.
O(n2)
D.
O(n3)
分数 1
作者 卫文学
单位 山东科技大学
下面是求连通网的最小生成树的prim算法:集合VT,ET分别放顶点和边,初始为( )
A.
VT,ET为空
B.
VT为所有顶点,ET为空
C.
VT为网中任意一点,ET为空
D.
VT为空,ET为网中所有边
分数 1
作者 卫文学
单位 山东科技大学
下面是求连通网的最小生成树的prim算法:集合VT,ET分别放顶点和边,下面步骤重复n-1次: a:( )。
A.
选i属于VT,j不属于VT,且(i,j)上的权最小
B.
选i属于VT,j不属于VT,且(i,j)上的权最大
C.
选i不属于VT,j不属于VT,且(i,j)上的权最小
D.
选i不属于VT,j不属于VT,且(i,j)上的权最大
分数 1
作者 卫文学
单位 山东科技大学
下面是求连通网的最小生成树的prim算法:集合VT,ET分别放顶点和边,下面步骤重复n-1次: b:( )。
A.
顶点i加入VT,(i,j)加入ET
B.
顶点j加入VT,(i,j)加入ET
C.
顶点j加入VT,(i,j)从ET中删去
D.
顶点i,j加入VT,(i,j)加入ET
分数 1
作者 卫文学
单位 山东科技大学
下面是求连通网的最小生成树的prim算法:集合VT,ET分别放顶点和边,下面步骤重复n-1次: 最后:( )。
A.
ET 中为最小生成树
B.
不在ET中的边构成最小生成树
C.
ET中有n-1条边时为生成树,否则无解
D.
ET中无回路时,为生成树,否则无解
分数 2
作者 卫文学
单位 山东科技大学
(1). 求从指定源点到其余各顶点的迪杰斯特拉(Dijkstra)最短路径算法中弧上权不能为负的原因是在实际应用中无意义;
(2). 利用Dijkstra求每一对不同顶点之间的最短路径的算法时间是O(n3 ) ;(图用邻接矩阵表示)
(3). Floyd求每对不同顶点对的算法中允许弧上的权为负,但不能有权和为负的回路。
上面不正确的是( )。
A.
(1),(2),(3)
B.
(1)
C.
(1),(3)
D.
(2),(3)
分数 2
作者 卫文学
单位 山东科技大学
当各边上的权值( )时,BFS算法可用来解决单源最短路径问题。
A.
均相等
B.
均互不相等
C.
不一定相等
分数 2
作者 卫文学
单位 山东科技大学
求解最短路径的Floyd算法的时间复杂度为( )。
A.
O(n)
B.
O(n+c)
C.
O(n*n)
D.
O(nnn)
分数 2
作者 卫文学
单位 山东科技大学
已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},
G的拓扑序列是( )。
A.
V1,V3,V4,V6,V2,V5,V7
B.
V1,V3,V2,V6,V4,V5,V7
C.
V1,V3,V4,V5,V2,V6,V7
D.
V1,V2,V5,V3,V4,V6,V7
分数 2
作者 卫文学
单位 山东科技大学
若一个有向图的邻接距阵中,主对角线以下的元素均为零,则该图的拓扑有序序列( )。
A.
存在
B.
不存在
分数 2
作者 卫文学
单位 山东科技大学
一个有向无环图的拓扑排序序列( )是唯一的。
A.
一定
B.
不一定
分数 2
作者 卫文学
单位 山东科技大学
在有向图G的拓扑序列中,若顶点Vi在顶点Vj之前,则下列情形不可能出现的是( )。
A.
G中有弧<Vi,Vj>
B.
G中有一条从Vi到Vj的路径
C.
G中没有弧<Vi,Vj>
D.
G中有一条从Vj到Vi的路径
分数 2
作者 卫文学
单位 山东科技大学
在用邻接表表示图时,拓扑排序算法时间复杂度为( )。
A.
O(n)
B.
O(n+e)
C.
O(n*n)
D.
O(nnn)
分数 2
作者 卫文学
单位 山东科技大学
关键路径是事件结点网络中( )。
A.
从源点到汇点的最长路径
B.
从源点到汇点的最短路径
C.
最长回路
D.
最短回路
分数 2
作者 卫文学
单位 山东科技大学
下面关于求关键路径的说法不正确的是( )。
A.
求关键路径是以拓扑排序为基础的
B.
一个事件的最早开始时间同以该事件为尾的弧的活动最早开始时间相同
C.
一个事件的最迟开始时间为以该事件为尾的弧的活动最迟开始时间与该活动的持续时间的差
D.
关键活动一定位于关键路径上
分数 2
作者 卫文学
单位 山东科技大学
下列关于AOE网的叙述中,不正确的是( )。
A.
关键活动不按期完成就会影响整个工程的完成时间
B.
任何一个关键活动提前完成,那么整个工程将会提前完成
C.
所有的关键活动提前完成,那么整个工程将会提前完成
D.
某些关键活动提前完成,那么整个工程将会提前完成
分数 2
作者 杨红梅
单位 山东科技大学
若查找每个记录的概率均等,则在具有n个记录的连续顺序文件中采用顺序查找法查找一个记录,其平均查找长度ASL为( )。
A.
(n-1)/2
B.
n/2
C.
(n+1)/2
D.
n
分数 2
作者 杨红梅
单位 山东科技大学
对N个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为( )
A.
(N+1)/2
B.
N/2
C.
N
D.
[(1+N)N ]/2
分数 2
作者 杨红梅
单位 山东科技大学
下面关于二分查找的叙述正确的是 ( )
A.
表必须有序,表可以顺序方式存储,也可以链表方式存储
B.
表必须有序且表中数据必须是整型,实型或字符型
C.
表必须有序,而且只能从小到大排列
D.
表必须有序,且表只能以顺序方式存储
分数 2
作者 杨红梅
单位 山东科技大学
对线性表进行二分查找时,要求线性表必须( )
A.
以顺序方式存储
B.
以顺序方式存储,且数据元素有序
C.
以链接方式存储
D.
以链接方式存储,且数据元素有序
分数 2
作者 杨红梅
单位 山东科技大学
适用于折半查找的表的存储方式及元素排列要求为( )
A.
链接方式存储,元素无序
B.
链接方式存储,元素有序
C.
顺序方式存储,元素无序
D.
顺序方式存储,元素有序
分数 2
作者 杨红梅
单位 山东科技大学
用二分(对半)查找表的元素的速度比用顺序法( )
A.
必然快
B.
必然慢
C.
相等
D.
不能确定
分数 2
作者 杨红梅
单位 山东科技大学
当在一个有序的顺序存储表上查找一个数据时,即可用折半查找,也可用顺序查找,但前者比后者的查找速度
A.
必定快
B.
不一定
C.
在大部分情况下要快
D.
取决于表递增还是递减
分数 2
作者 杨红梅
单位 山东科技大学
具有12个关键字的有序表,折半查找的平均查找长度( )
A.
3.1
B.
4
C.
2.5
D.
5
分数 2
作者 杨红梅
单位 山东科技大学
折半查找的时间复杂性为( )
A.
O(n2)
B.
O(n)
C.
O(nlogn)
D.
O(logn)
分数 2
作者 杨红梅
单位 山东科技大学
当采用分快查找时,数据的组织方式为 ( )
A.
数据分成若干块,每块内数据有序
B.
数据分成若干块,每块内数据不必有序,但块间必须有序,每块内最大(或最小)的数据组成索引块
C.
数据分成若干块,每块内数据有序,每块内最大(或最小)的数据组成索引块
D.
数据分成若干块,每块(除最后一块外)中数据个数需相同
分数 2
作者 杨红梅
单位 山东科技大学
如果要求一个线性表既能较快的查找,又能适应动态变化的要求,则可采用( )查找法。
A.
分快查找
B.
顺序查找
C.
折半查找
D.
基于属性
分数 2
作者 杨红梅
单位 山东科技大学
既希望较快的查找又便于线性表动态变化的查找方法是 ( )
A.
顺序查找
B.
折半查找
C.
索引顺序查找
D.
哈希法查找
分数 2
作者 杨红梅
单位 山东科技大学
分别以下列序列构造二叉排序树,与用其它三个序列所构造的结果不同的是( )
A.
(100,80, 90, 60, 120,110,130)
B.
(100,120,110,130,80, 60, 90)
C.
(100,60, 80, 90, 120,110,130)
D.
(100,80, 60, 90, 120,130,110)
分数 2
作者 杨红梅
单位 山东科技大学
在平衡二叉树中插入一个结点后造成了不平衡,设最低的不平衡结点为A,并已知A的左孩子的平衡因子为0右孩子的平衡因子为1,则应作( ) 型调整以使其平衡。
A.
LL
B.
LR
C.
RL
D.
RR
分数 2
作者 杨红梅
单位 山东科技大学
下列关于m阶B-树的说法错误的是( )
A.
根结点至多有m棵子树
B.
所有叶子都在同一层次上
C.
非叶结点至少有m/2 (m为偶数)或m/2+1(m为奇数)棵子树
D.
根结点中的数据是有序的
分数 2
作者 杨红梅
单位 山东科技大学
下面关于m阶B树说法正确的是( )
①每个结点至少有两棵非空子树;
②树中每个结点至多有m一1个关键字;
③所有叶子在同一层上;
④当插入一个数据项引起B树结点分裂后,树长高一层。
A.
①②③
B.
②③
C.
②③④
D.
③
分数 2
作者 杨红梅
单位 山东科技大学
下面关于B和B+树的叙述中,不正确的是( )
A.
B树和B+树都是平衡的多叉树。
B.
B树和B+树都可用于文件的索引结构。
C.
B树和B+树都能有效地支持顺序检索。
D.
B树和B+树都能有效地支持随机检索。
分数 2
作者 杨红梅
单位 山东科技大学
m阶B-树是一棵( )
A.
m叉排序树
B.
m叉平衡排序树
C.
m-1叉平衡排序树
D.
m+1叉平衡排序树
分数 2
作者 杨红梅
单位 山东科技大学
设有一组记录的关键字为{19,14,23,1,68,20,84,27,55,11,10,79},用链地址法构造散列表,散列函数为H(key)=key MOD 13,散列地址为1的链中有( )个记录。
A.
1
B.
2
C.
3
D.
4
分数 2
作者 杨红梅
单位 山东科技大学
下面关于哈希(Hash,杂凑)查找的说法正确的是( )
A.
哈希函数构造的越复杂越好,因为这样随机性好,冲突小
B.
除留余数法是所有哈希函数中最好的
C.
不存在特别好与坏的哈希函数,要视情况而定
D.
若需在哈希表中删去一个元素,不管用何种方法解决冲突都只要简单的将该元素删去即可
分数 2
作者 杨红梅
单位 山东科技大学
关于杂凑查找说法不正确的有几个( )
(1)采用链地址法解决冲突时,查找一个元素的时间是相同的
(2)采用链地址法解决冲突时,若插入规定总是在链首,则插入任一个元素的时间是相同的
(3)用链地址法解决冲突易引起聚集现象
(4)再哈希法不易产生聚集
A.
1
B.
2
C.
3
D.
4
分数 2
作者 杨红梅
单位 山东科技大学
设哈希表长为14,哈希函数是H(key)=key%11,表中已有数据的关键字为15,38,61,84共四个,现要将关键字为49的结点加到表中,用二次探测再散列法解决冲突,则放入的位置是( )
A.
8
B.
3
C.
5
D.
9
分数 2
作者 杨红梅
单位 山东科技大学
假定有k个关键字互为同义词,若用线性探测法把这k个关键字存入散列表中,至少要进行多少次探测?( )
A.
k-1次
B.
k次
C.
k+1次
D.
k(k+1)/2次
分数 2
作者 杨红梅
单位 山东科技大学
哈希查找中k个关键字具有同一哈希值,若用线性探测法将这k个关键字对应的记录存入哈希表中,至少要进行( )次探测。
A.
k
B.
k+1
C.
k(k+1)/2
D.
1+k(k+1)/2
分数 2
作者 杨红梅
单位 山东科技大学
散列函数有一个共同的性质,即函数值应当以( )取其值域的每个值。
A.
最大概率
B.
最小概率
C.
平均概率
D.
同等概率
分数 2
作者 杨红梅
单位 山东科技大学
将10个元素散列到100000个单元的哈希表中,则( )产生冲突。
A.
一定会
B.
一定不会
C.
仍可能会
分数 2
作者 鲁法明
单位 山东科技大学
A.
1010H, 1014H,1004H
B.
1010H, 1004H,1014H
C.
1014H, 1010H,1004H
D.
1014H, 1004H,1010H
分数 2
作者 鲁法明
单位 山东科技大学
。
A.
B.
C.
D.
分数 2
作者 鲁法明
单位 山东科技大学
A.
2
B.
3
C.
4
D.
5
分数 0
作者 鲁法明
单位 山东科技大学
(B)
A.
86
B.
87
C.
88
D.
89
分数 2
作者 鲁法明
单位 山东科技大学
若森林F有15条边,25个结点,则F包含树的个数是( )
A.
8
B.
9
C.
10
D.
11
分数 2
作者 鲁法明
单位 山东科技大学
A.
V1,V5,V4, V3, V2
B.
V1,V3,V2, V5, V4
C.
V1,V2,V5, V4, V3
D.
V1,V2,V3, V4, V5
分数 2
作者 鲁法明
单位 山东科技大学
若将n个顶点e条弧的有向图采用邻接表存储,则拓扑排序算法的时间复杂度是()
A.
O( n )
B.
O( n+e )
C.
O( n^2 )
D.
O( n * e )
分数 5
作者 鲁法明
单位 山东科技大学
对于一个不带权的图而言,设其邻接矩阵为A,则A * A中第i行第j列元素值的含义是()。
A.
第i个顶点到第j个顶点是否有边
B.
第i个顶点到第j个顶点是否有路径
C.
第i个顶点到第j个顶点路径的长度
D.
第i个顶点到第j个顶点路径的条数
分数 3
作者 鲁法明
单位 山东科技大学
求下面带权图的最小(代价)生成树时,可能是克鲁斯卡(Kruskal)算法第2次选中但不是普里姆(Prim)算法(从V4开始)第2次选中的边是。
A.
(V1,V3)
B.
(V1,V4)
C.
(V2,V3)
D.
(V3,V4)
分数 3
作者 鲁法明
单位 山东科技大学
A.
5 2 3 4 6
B.
5 2 3 6 4
C.
5 2 4 3 6
D.
5 2 6 3 4
分数 3
作者 鲁法明
单位 山东科技大学
n个顶点e条弧的有向图采用邻接表存储,则拓扑排序算法的时间复杂度是。
A.
O(n)
B.
O(n+e)
C.
O(n^2)
D.
O(n * e)
分数 2
作者 鲁法明
单位 山东科技大学
串 ‘ababaaababaa’ 的next数组为:
A.
012345678999
B.
012121111212
C.
011234223456
D.
0123012322345
分数 3
作者 鲁法明
单位 山东科技大学
字符串‘ababaabab’ 的nextval 为:
A.
(0,1,0,1,04,1,0,1)
B.
(0,1,0,1,0,2,1,0,1)
C.
(0,1,0,1,0,0,0,1,1)
D.
(0,1,0,1,0,1,0,1,1 )
分数 3
作者 鲁法明
单位 山东科技大学
下面关于串的的叙述中,哪一个是不正确的。
A.
串是字符的有限序列
B.
空串是由空格构成的串
C.
模式匹配是串的一种重要运算
D.
串既可以采用顺序存储,也可以采用链式存储
分数 3
作者 鲁法明
单位 山东科技大学
对于模式串'abaaab',利用KMP算法进行模式匹配时,其对应的Next取值(注意是未改进的Next值)为:
A.
0 1 1 2 2 2
B.
0 1 2 3 4 5
C.
0 1 2 2 2 1
D.
0 1 1 2 3 1
分数 2
作者 鲁法明
单位 山东科技大学
若对N阶对称矩阵A以行优先存储的方式将其下三角形的元素(包括主对角线元素)依次存放于一维数组B[1..(N(N+1))/2]中,则A中第i行第j列(i和j从1开始,且i>j)的元素在B中的位序k(k从1开始)为
A.
i*(i-1)/2+j
B.
j*(j-1)/2+i
C.
i*(i+1)/2+j
D.
j*(j+1)/2+i
分数 3
作者 鲁法明
单位 山东科技大学
将{ 3, 8, 9, 1, 2, 6 }依次插入初始为空的二叉排序树。则该树的后序遍历结果是:
A.
2, 1, 3, 6, 9, 8
B.
1, 2, 8, 6, 9, 3
C.
2, 1, 6, 9, 8, 3
D.
1, 2, 3, 6, 9, 8
分数 3
作者 考研真题
单位 浙江大学
设 n 是描述问题规模的非负整数,下列程序段的时间复杂度是:
x = 0;
while ( n >= (x+1)*(x+1) )
x = x+1;
A.
O(logn)
B.
O(n1/2)
C.
O(n)
D.
O(n2)
分数 3
作者 DS课程组
单位 浙江大学
在双向链表存储结构中,删除p
所指的结点,相应语句为:
A.
p->prior=p->prior->prior; p->prior->next=p;
B.
p->next->prior=p; p->next=p->next->next;
C.
p->prior->next=p->next; p->next->prior=p->prior;
D.
p->next=p->prior->prior; p->prior=p->next->next;
分数 3
作者 徐镜春
单位 浙江大学
给定一个堆栈的入栈序列为{ 1, 2, ⋯, n },出栈序列为{ p1, p2, ⋯, pn }。如果p2=n,则存在多少种不同的出栈序列?
A.
n
B.
n−1
C.
2
D.
1
分数 3
作者 严冰
单位 浙大城市学院
在一个不带头结点的非空链式队列中,假设f和r分别为队头和队尾指针,则插入s所指的结点运算是( )。
A.
f->next=s; f=s;
B.
r->next=s; r=s;
C.
s->next=s; r=s;
D.
s->next=f; f=s;
分数 3
作者 魏宝刚
单位 浙江大学
已知二叉树的前序遍历序列为 ABDCEFG,中序遍历序列为 DBCAFEG,则后序遍历序列为 __
A.
BDACEFG
B.
DCBFGEA
C.
ABCDEFG
D.
GFEDCBA
分数 3
作者 DS课程组
单位 浙江大学
二叉树中第5层(根的层号为1)上的结点个数最多为:
A.
8
B.
15
C.
16
D.
32
分数 3
作者 考研真题
单位 浙江大学
对于任意一棵高度为 5 且有 10 个结点的二叉树,若采用顺序存储结构保存,每个结点占 1 个存储单元(仅存放结点的数据信息),则存放该二叉树需要的存储单元的数量至少是:
A.
31
B.
16
C.
15
D.
10
分数 3
作者 考研真题
单位 浙江大学
修改递归方式实现的图的深度优先搜索(DFS)算法,将输出(访问)顶点信息的语句移动到退出递归前(即执行输出语句后立即退出递归)。采用修改后的算法遍历有向无环图 G,若输出结果中包含 G 中的全部顶点,则输出的顶点序列是 G 的:
A.
拓扑有序序列
B.
逆拓扑有序序列
C.
广度优先搜索序列
D.
深度优先搜索序列
分数 3
作者 周治国
单位 东北师范大学
下面代码段的时间复杂度是()。
x=0; for( i=1; i<n; i++ ) for ( j=1; j<=n-i; j++ ) x++;
A.
O(n)
B.
O(n2)
C.
O(n3)
D.
O(2n)
分数 3
作者 郝秀兰
单位 湖州师范学院
设有数组A[i,j],数组的每个元素长度为3字节,i的值为1 到8 ,j的值为1 到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为
A.
BA+141
B.
BA+180
C.
BA+222
D.
BA+225
分数 3
作者 考研真题
单位 浙江大学
现有队列 Q 与栈 S,初始时 Q 中的元素依次是{ 1, 2, 3, 4, 5, 6 }(1在队头),S 为空。若允许下列3种操作:(1)出队并输出出队元素;(2)出队并将出队元素入栈;(3)出栈并输出出栈元素,则不能得到的输出序列是:
A.
1, 2, 5, 6, 4, 3
B.
2, 3, 4, 5, 6, 1
C.
3, 4, 5, 6, 1, 2
D.
6, 5, 4, 3, 2, 1
分数 3
作者 陈越
单位 浙江大学
给定有权无向图的邻接矩阵如下,其最小生成树的总权重是:
A.
8
B.
15
C.
20
D.
22
分数 3
作者 王东
单位 贵州师范学院
若一棵二叉树有126个结点,在第7层(根结点在第1层)至多有( )个结点。
A.
32
B.
64
C.
63
D.
不存在第7层
分数 3
作者 李祥
单位 湖北经济学院
深度优先搜索
观察下面的无向图中:
从顶点 A 出发按深度优先遍历不可能得到哪个序列?
A.
ABGFCDE
B.
ABCDEFG
C.
ABGDEFC
D.
AGEDCBF
分数 3
作者 DS课程组
单位 浙江大学
设一段文本中包含字符{a, b, c, d, e},其出现频率相应为{3, 2, 5, 1, 1}。则经过哈夫曼编码后,文本所占字节数为:
A.
40
B.
36
C.
25
D.
12
分数 3
作者 LY
单位 西南石油大学
n个顶点的连通图用邻接矩阵表示时,该矩阵至少有( )个非零元素。
A.
n
B.
2(n-1)
C.
n/2
D.
n*n
分数 3
作者 LY
单位 西南石油大学
设无向图的顶点个数为n,则该图最多有( )条边。
A.
n-1
B.
n(n-1)/2
C.
n(n+1)/2
D.
0
E.
n*n
分数 3
作者 严冰
单位 浙江大学
下列算法由无向图的邻接表生成邻接矩阵,请将该算法补充完整。
typedef struct Node {
int adjvex; //邻接点的位置
struct Node *next; //指向下一条边
} edgenode; //边结点
typedef edgenode *adjlist[ MaxVertexNum ];
typedef int adjmatrix[MaxVertexNum][MaxVertexNum];
void Graph3(adjlist GL, adjmatrix GA, int n)
{ //由GL建立GA
int i, j;
edgenode *p;
for ( i = 0 ; i<MaxVertexNum; i++ ) //初始化邻接矩阵
for ( j = 0 ; i<MaxVertexNum; i++ )
GA[i][j] = 0;
for ( i = 0 ; i<MaxVertexNum; i++ ) //访问邻接表
if (GL[i] != NULL) {
p = GL[i];
while (p!= NULL){
}
}
}
A.
j= p->adjvex ; GA[i][j] = 1; p = p->next;
B.
GA[i][j] = 1; p = p->next ;
C.
j= p->adjvex ; GL[i][j] = 1; p = p->next ;
D.
if (GL[i] ){ GA[i][ p->adjvex] = 1; break; } else p = p->next ;