仅用与非门实现一位数值的比较电路

在数字电路的组合逻辑设计中,为了实现资源的优化,我们总是希望使用尽可能最少的逻辑门函数种类,又考虑到任意的逻辑函数都可以化简为一定数量的“与-或”式组合,自然,我们便可以仅用与非门来实现任意的组合逻辑电路。

题目描述

在电测实验中一次的设计就考察了上面思想的运用,题目是设计一个一位数值的比较电路,并且通过LED的点亮来输出结果。考虑到我们的实验中并没有提供或非门芯片,多次灵活使用与非门芯片就成了设计的关键。

题目分析

考虑两路输入分别为A,B。那么最后结果无非为三种,即A>B,A<B和A=B。通过“与-或”式进行组合也就是A\bar{B}\bar{A}BAB+\bar{A} \bar{B}。在知道逻辑函数的对应表达式后,主要的问题就是将其转化为“与-或”式的组合。其中最常见的使用方式是:

取反\bar{A}=\overline{A\cdot A}

或运算AB+CD=\overline{\overline{AB}\cdot \overline{CD}}

基础设计

在此基础上,我们就可以得到最直接的设计思路,三种比较情况的逻辑函数转化为:

A>B\overline{A\cdot\overline{B\cdot B}}(取反)

A<B\overline{\overline{A\cdot A}\cdot B}(取反)

A=B\overline{\overline{AB}\cdot\overline{\bar{A}\bar{B}}}(原式)

考虑到第三式没有取反,在电路设计的时候我们需要再加上一个取反单路,然后对于LED灯使用共阳极连接,低电平有效的点亮方式。

在硬件仿真平台Proteus上进行仿真,结果如下(此时A为高电平,B为低电平。红点代表高电平,蓝点代表低电平):

简化设计

以上的电路设计很直观,步步为营,但是很有可能不是最简的设计,特别是采用与非门来构成大量的非门,很容易造成与非门的资源浪费,下面介绍一种更加简单的设计,仅仅使用了4个与非门(一块74HC00即可):

A>B\overline{A\cdot \bar{B}}=\overline{A\cdot \overline{AB}}(取反)

A<B\overline{\bar{A}\cdot B}=\overline{\overline{AB}\cdot B}(取反)

A=B\overline{AB+\bar{A} \bar{B}}=A\bar{B}+\bar{A}B=\overline{\overline{A\cdot \bar{B}}\cdot\overline{\bar{A}\cdot B}}(取反)

但这样的设计肯定对于逻辑函数的等价变化技巧有较高的要求,笔者也算是有试出来的成分。在硬件仿真平台Proteus上进行仿真,结果如下(此时A为高电平,B为低电平。红点代表高电平,蓝点代表低电平):

在Cadence17.4中画出电路图并直流仿真,结果如下(里面不少LED无法参与仿真,迫于无奈我选了个不了解的MLED,感觉影响应该不大):

可见这样的电路设计是可行的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值