本文为大家献上AI领域重量级大佬的人工智能课程资源。
这一系列课程深入剖析了深度学习、机器学习等多个前沿领域,带您领略决策树、朴素贝叶斯、逻辑回归、神经网络和深度学习等核心技术的魅力。同时,课程还将带您探索贝叶斯学习、支持向量机、核方法、聚类和无监督学习等多元化机器学习领域。更有学习提升算法、强化学习以及学习理论等高级课程,为您在人工智能领域的深入研究和应用提供坚实的基石。
吴恩达(Andrew Ng) 深度学习
在深度学习领域,吴恩达教授的教学视频堪称瑰宝。作为人工智能和机器学习领域的泰斗,他通过Coursera等平台无私分享其丰富的学术见解与实践经验。他深入浅出的讲解、实践导向的教学方式以及全面培养综合素质的理念,赢得了广大学习者的热烈追捧和深深信赖。无论您是初学者还是已有一定基础的学习者,都能从中汲取到宝贵的智慧与灵感。
李宏毅 深度学习
李宏毅教授的深度学习课程,堪称是机器学习与深度学习爱好者的入门宝典。他系统全面地介绍了深度学习的基础知识,包括深度学习算法、卷积神经网络(CNN)、循环神经网络(RNN)、激活函数、损失函数等核心要点。同时,课程强调实践应用,提供了丰富的代码示例和实战案例,让您在操作中深化对深度学习技术的理解。李宏毅教授的讲解风格简洁明快,语言精准易懂,即使是初学者也能轻松入门。
Yann LeCun 深度学习
Yann LeCun的深度学习课程堪称业内经典。本课程深入探讨了深度学习和表示学习的最新技术,涵盖了监督和无监督的深度学习、嵌入方法、度量学习、卷积和循环网络等核心议题。更重要的是,它将这些技术在实际应用中进行了生动展示,如计算机视觉、自然语言理解和语音识别等领域。这是一门理论与实践并重的优质课程,对于有一定机器学习基础的学习者来说,无疑是深入学习深度学习的绝佳选择。此外,该课程在bilibili上也有相应的翻译版本供您参考。
李飞飞——视觉识别中的卷积神经网络(cs231n)
本课程将带您走进深度学习的世界,探索如何运用这一技术于计算机视觉领域。通过作业和最终项目,您将亲身体验如何训练和微调神经网络。课程以Python语言为主要工具,全程视频讲座,让您轻松跟进学习进度。
Google & Udacity——深度学习
由谷歌首席科学家Vincent Vanhoucke与Udacity的Arpan Chakraborty联手打造的这门课程,将引领您深入探索深度学习的奥秘。课程内容涵盖了深度学习基础、深层神经网络、卷积神经网络以及针对文本和序列的深层模型。课程作业要求使用tensorflow框架实践,更配备了丰富的视频讲座,助您轻松掌握每一个知识点。
斯坦福大学——基于深度学习的自然语言处理(CS224n)
本课程是对斯坦福大学“cs224n:深度学习中的自然语言处理”课程的精华提炼,是对2018年课程的完美延续。在这里,您将探讨如何将深度学习应用于自然语言处理,理解其中的问题与限制。讲师Christopher Manning和Richard Socher将为您指明方向。
牛津大学——自然语言处理中的深度学习
本课程深入解析了深度学习的基本原理,并教授您如何将其灵活应用于自然语言处理领域。您将学会定义该领域的数学问题,并积累在CPU和GPU上进行实际编程的宝贵经验。讲师团队汇聚了牛津大学、CMU、DeepMind和英伟达公司的顶尖专家。课程全程配备视频讲座,方便您随时随地学习。
CMU——深度强化学习与控制
本课程由苹果人工智能研究所主任Ruslan salakhutdinovat与CMU的Katerina Fragkiadaki共同授课。课程内容涵盖了深度学习、强化学习、马尔可夫链决策过程(MDP)、部分可观马尔可夫链决策过程(POMDPs)、时序差分学习、Q学习以及深刻Q学习的基础知识。前沿话题还包括最优化控制、轨道优化、层次强化学习和迁移学习等。
CMU——深度学习入门
本课程由苹果公司人工智能研究所主任Ruslan Salakhutdinov主讲,为初学者提供了一份深入浅出的深度学习入门指南。通过四个精心制作的视频讲座,您将快速掌握监督学习、无监督学习以及深度学习中的模型评估和前沿研究问题。这个链接可能存在安全风险,为了保护您的设备和数据安全,请避免访问此链接。这个链接可能存在安全风险,为了保护您的设备和数据安全,请避免访问此链接。
CMU—— 机器学习
在卡耐基梅隆大学计算机学院的杰出领袖Andrew Moore博士的引领下,我们迎来了这场深度解析机器学习的旅程。通过这门课程,您将领略到机器学习的奥秘与魅力,为未来的科研或职业道路奠定坚实基础。
康奈尔大学——机器学习
该课程由Kilian Weinberger主导,另附有方便手机查看的课程笔记。
Andrew Ng——机器学习
吴恩达2017年在斯坦福大学的最新课程,包括视频讲座。
Geoffrey Hinton——机器学习中的神经网络
该课程是Hinton2014年课程的新版本,包含视频讲座。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓