一、什么是微调?
微调(Fine-tuning)是一种在自然语言处理(NLP)中使用的技术,用于将预训练的语言模型适应于特定任务或领域。Fine-tuning的基本思想是采用已经在大量文本上进行训练的预训练语言模型,然后在小规模的任务特定文本上继续训练它。
Fine-tuning的概念已经存在很多年,并在各种背景下被使用。Fine-tuning在NLP中最早的已知应用是在神经机器翻译(NMT)的背景下,其中研究人员使用预训练的神经网络来初始化一个更小的网络的权重,然后对其进行了特定的翻译任务的微调。
经典的fine-tuning方法包括将预训练模型与少量特定任务数据一起继续训练。在这个过程中,预训练模型的权重被更新,以更好地适应任务。所需的fine-tuning量取决于预训练语料库和任务特定语料库之间的相似性。如果两者相似,可能只需要少量的fine-tuning。如果两者不相似,则可能需要更多的fine-tuning。
在NLP中,fine-tuning最著名的例子之一是由OpenAI开发的OpenAI GPT(生成式预训练变压器)模型。GPT模型在大量文本上进行了预训练,然后在各种任务上进行了微调,例如语言建模,问答和摘要。经过微调的模型在这些任务上取得了最先进的性能。
二、微调技术有哪些?
常见的微调技术有Instruction Tuning、BitFit、Prefix Tuning、Prompt Tuning、P-Tuning、Adapter Tuning、LoRA、RLHF等:
本文仅介绍前两种非常重要的微调技术:指令微调和RLHF。
指令微调(Instruction Tuning)
指令微调是一种用有标记的指令提示和相应输出数据集对大型语言模型(LLM)进行微调的技术。它不仅在特定任务上提高了模型的性能,而且在一般情况下提高了模型的性能,从而有助于将预训练的模型适应实际使用。
指令微调是用于调整预先训练的基础模型的更广泛的微调技术类别的子集。从样式自定义到补充预训练模型的核心知识和词汇到优化特定用例的性能,因此可以对基础模型进行微调。尽管微调并不是任何特定领域或人工智能模型体系结构的独特之处,但它已成为LLM生命周期不可或缺的一部分。
指令微调可以被视为有监督微调(Supervised Fine-Tuning,SFT)的一种特殊形式。但是,它们的目标依然有差别。SFT是一种使用标记数据对预训练模型进行微调的过程,以便模型能够更好地执行特定任务。而指令微调是一种通过在包括(指令,输出)对的数据集上进一步训练大型语言模型(LLMs)的过程,以增强LLMs的能力和可控性。指令微调的特殊之处在于其数据集的结构,即由人类指令和期望的输出组成的配对。这种结构使得指令微调专注于让模型理解和遵循人类指令。
指令微调与其他微调技术并不是互斥的。例如,聊天模型经常从人类反馈(RLHF)中进行指导调整和强化学习,这是一种微调技术,旨在提高诸如帮助和诚实之类的抽象素质;用于编码的模型经常进行指令调整(以广泛优化以下说明的响应),以及对特定于编程的数据进行其他微调(以增强模型的编码语法和词汇的了解)。
指令微调的作用与大多数微调技术一样,在于预训练的大模型没有针对对话或指令执行进行优化。从字面意义上讲,大模型不会根据提示词回答问题,它们只是根据提示词向其添加生成的文本。指令调优有助于使大模型的回答更有用。
基于人类反馈的强化学习(RLHF)
基于人类反馈的强化学习 (Reinforcement Learning from Human Feedback, RLHF) ,思想就是使用强化学习的方式直接优化带有人类反馈的语言模型。RLHF 使得在一般文本数据语料库上训练的语言模型能和复杂的人类价值观对齐。
RLHF 是一种特殊技术,用于与其他技术(例如有监督学习和无监督学习)一起训练人工智能系统,使其更加人性化。首先,将模型的响应与人类的响应进行比较。然后,人类会评测不同机器响应的质量,对哪些响应更人性化进行评分。分数可以基于人类的内在品质,例如友善、适当程度的情境化和心情。
RLHF 在自然语言理解方面表现得非常突出,但也可用于其他生成式人工智能应用程序。
RLHF 是一项涉及多个模型和不同训练阶段的复杂概念,一般会分为三步,这也是一个生成自己大模型所必需的:
第一步是监督微调(Supervised Fine Tuning,SFT),即用数据集进行模型微调,预训练一个语言模型 (LM);
第二步是训练一个奖励模型,它通过对于同一个 prompt 的不同输出进行人工排序,聚合问答数据并训练一个奖励模型 (Reward Model,RM);
奖励基于三个原则:
- 有用性(Helpful):判断模型遵循用户指令以及推断指令的能力。
- 真实性(Honest):判断模型产生幻觉(编造事实)的倾向。
- 无害性(Harmless):判断模型的输出是否适当、是否诋毁或包含贬义的内容。
第三步则是用强化学习算法(RL) 方式微调 LM。
下图为RLHF学习过程的概述。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!