1. 背景介绍
1.1 强化学习与连续动作空间
强化学习 (Reinforcement Learning, RL) 已经成为人工智能领域中最具前景的研究方向之一,它关注的是智能体如何在与环境的交互中学习到最优策略,从而最大化长期累积奖励。传统的强化学习算法,如 Q-learning 和 SARSA,主要针对离散动作空间,即智能体在每个状态下只能选择有限个动作。然而,在许多实际应用中,智能体需要在连续的动作空间中进行决策,例如机器人控制、自动驾驶等。
1.2 DDPG 的兴起
深度确定性策略梯度 (Deep Deterministic Policy Gradient, DDPG) 算法正是为了解决连续动作空间问题而诞生的。它结合了深度学习和确定性策略梯度算法的优势,能够有效地学习到连续动作空间中的最优策略。DDPG 在机器人控制、游戏 AI 等领域取得了显著的成果,成为了强化学习算法中的佼佼者。
2. 核心概念与联系
2.1 演员-评论家架构
DDPG 采用了演员-评论家 (Actor-Critic) 架构,其中:
- 演员 (Actor):负责根据当前状态选择动作,并通过神经网络参数化,称为