Unsupervised Learning原理与代码实例讲解

本文深入探讨无监督学习原理,通过K-Means聚类和PCA降维算法的代码实例,讲解其核心概念、数学模型与应用场景。了解如何在客户细分、异常检测等领域应用无监督学习。
摘要由CSDN通过智能技术生成

1. 背景介绍

1.1 机器学习的分类

机器学习根据训练数据是否存在标签,可以分为三大类:监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning)。

  • 监督学习:利用已标记的数据训练模型,模型学习输入特征与标签之间的映射关系,以便对新的数据进行预测。例如:图像分类、目标检测、情感分析等。
  • 无监督学习:利用无标签的数据训练模型,模型通过挖掘数据自身的结构和模式,进行聚类、降维等操作。例如:客户细分、异常检测、推荐系统等。
  • 强化学习:通过与环境交互学习最优策略,模型根据环境反馈的奖励信号不断调整自身的行为,以最大化累积奖励。例如:游戏AI、机器人控制、自动驾驶等。

1.2 无监督学习的应用

无监督学习在许多领域都有广泛的应用,例如:

  • 客户细分:根据客户的购买历史、浏览行为等信息,将客户划分到不同的群体,以便进行精准营销。
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值