1. 背景介绍
1.1 机器学习的分类
机器学习根据训练数据是否存在标签,可以分为三大类:监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning)。
- 监督学习:利用已标记的数据训练模型,模型学习输入特征与标签之间的映射关系,以便对新的数据进行预测。例如:图像分类、目标检测、情感分析等。
- 无监督学习:利用无标签的数据训练模型,模型通过挖掘数据自身的结构和模式,进行聚类、降维等操作。例如:客户细分、异常检测、推荐系统等。
- 强化学习:通过与环境交互学习最优策略,模型根据环境反馈的奖励信号不断调整自身的行为,以最大化累积奖励。例如:游戏AI、机器人控制、自动驾驶等。
1.2 无监督学习的应用
无监督学习在许多领域都有广泛的应用,例如:
- 客户细分:根据客户的购买历史、浏览行为等信息,将客户划分到不同的群体,以便进行精准营销。 <