【LangChain编程:从入门到实践】RAG

【LangChain编程:从入门到实践】RAG

关键词:LangChain, RAG, 知识图谱, 检索式问答, 知识检索, 深度学习, 自然语言处理

1. 背景介绍

1.1 问题的由来

随着互联网的快速发展,信息量呈爆炸式增长。然而,大量信息的存在也带来了新的挑战:如何高效地从海量信息中检索到所需的知识和答案?传统的搜索引擎虽然能够提供关键词检索,但往往难以满足用户对特定知识或答案的精准需求。为了解决这一问题,检索式问答系统(Retrieval-Augmented Generation,RAG)应运而生。

1.2 研究现状

近年来,RAG技术在知识检索和问答领域取得了显著的进展。基于深度学习和自然语言处理技术,RAG系统能够从海量文本中检索到与用户查询相关的知识片段,并将其与生成的答案进行融合,提供更加精准和个性化的问答服务。

1.3 研究意义

RAG技术具有以下重要意义:

  • 提高问答系统的精度和效率:RAG系统通过检索技术,能够快速地从海量信息中找到与用户查询相关的知识片段ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值