【LangChain编程:从入门到实践】RAG
关键词:LangChain, RAG, 知识图谱, 检索式问答, 知识检索, 深度学习, 自然语言处理
1. 背景介绍
1.1 问题的由来
随着互联网的快速发展,信息量呈爆炸式增长。然而,大量信息的存在也带来了新的挑战:如何高效地从海量信息中检索到所需的知识和答案?传统的搜索引擎虽然能够提供关键词检索,但往往难以满足用户对特定知识或答案的精准需求。为了解决这一问题,检索式问答系统(Retrieval-Augmented Generation,RAG)应运而生。
1.2 研究现状
近年来,RAG技术在知识检索和问答领域取得了显著的进展。基于深度学习和自然语言处理技术,RAG系统能够从海量文本中检索到与用户查询相关的知识片段,并将其与生成的答案进行融合,提供更加精准和个性化的问答服务。
1.3 研究意义
RAG技术具有以下重要意义:
- 提高问答系统的精度和效率:RAG系统通过检索技术,能够快速地从海量信息中找到与用户查询相关的知识片段ÿ