神经架构搜索,NAS,深度学习,自动机器学习,自动模型设计,强化学习,进化算法
1. 背景介绍
深度学习近年来取得了令人瞩目的成就,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。然而,深度学习模型的性能通常依赖于精心设计的网络架构,而手工设计网络架构是一个耗时费力且需要专业知识的过程。随着深度学习模型的复杂性不断增加,手工设计网络架构变得越来越困难。
为了解决这个问题,神经架构搜索(NAS)应运而生。NAS是一种利用机器学习算法自动搜索最优神经网络架构的技术。它通过自动化流程,探索和评估大量的网络架构,最终找到在特定任务上表现最佳的架构。
2. 核心概念与联系
NAS的核心概念是将网络架构设计视为一个优化问题,并利用机器学习算法进行搜索。
2.1 核心概念
- 神经网络架构: 指的是神经网络的结构,包括层数、层类型、节点数量、连接方式等。
- 搜索空间: 指的是所有可能的网络架构的集合。
- 搜索策略: 指的是用于探索搜索空间的算法,例如强化学习、进化算法等。
- 评价指标: