ICLR 2024自动驾驶论文解读:强化学习与虚实迁移学习

自动驾驶, 强化学习, 迁移学习, 虚实环境, 仿真训练, 模型部署

1. 背景介绍

自动驾驶技术作为人工智能领域的重要应用之一,近年来取得了显著进展。然而,由于复杂的路况环境和多样的驾驶场景,自动驾驶系统的开发仍然面临着诸多挑战。其中,安全可靠、泛化能力强、适应性好是关键问题。

强化学习(Reinforcement Learning,RL)因其能够学习复杂决策策略的优势,在自动驾驶领域得到了广泛应用。传统的RL方法通常依赖于大量的真实道路数据进行训练,但收集和标注真实数据成本高昂且存在安全风险。

虚实迁移学习(Transfer Learning in Virtual and Real Environments)作为一种新兴的学习范式,旨在利用虚拟环境中的仿真数据来辅助真实环境中的训练,从而降低真实数据需求,提高训练效率和安全性。

2. 核心概念与联系

2.1 强化学习

强化学习是一种基于交互的机器学习方法,其核心思想是通过奖励机制引导智能体学习最优的策略。

  • 智能体 (Agent): 自动驾驶系统,负责感知环境、做出决策并执行动作。
  • 环境 (Environment): 道路环境
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值