自动驾驶, 强化学习, 迁移学习, 虚实环境, 仿真训练, 模型部署
1. 背景介绍
自动驾驶技术作为人工智能领域的重要应用之一,近年来取得了显著进展。然而,由于复杂的路况环境和多样的驾驶场景,自动驾驶系统的开发仍然面临着诸多挑战。其中,安全可靠、泛化能力强、适应性好是关键问题。
强化学习(Reinforcement Learning,RL)因其能够学习复杂决策策略的优势,在自动驾驶领域得到了广泛应用。传统的RL方法通常依赖于大量的真实道路数据进行训练,但收集和标注真实数据成本高昂且存在安全风险。
虚实迁移学习(Transfer Learning in Virtual and Real Environments)作为一种新兴的学习范式,旨在利用虚拟环境中的仿真数据来辅助真实环境中的训练,从而降低真实数据需求,提高训练效率和安全性。
2. 核心概念与联系
2.1 强化学习
强化学习是一种基于交互的机器学习方法,其核心思想是通过奖励机制引导智能体学习最优的策略。
- 智能体 (Agent): 自动驾驶系统,负责感知环境、做出决策并执行动作。
- 环境 (Environment): 道路环境