1. 背景介绍
在当今的数据驱动型世界中,数据集是人工智能、机器学习和数据分析等领域的关键资源。然而,数据集的质量参差不齐,这会导致模型性能下降,甚至无法使用。传统的数据集评估方法往往依赖于专家评估,费时费力,且主观性强。因此,开发一种高效、客观的数据集质量评估方法变得至关重要。
2. 核心概念与联系
2.1 核心概念
- 数据集质量(Data Set Quality,DSQ):数据集的准确性、完整性、一致性、时效性和可用性等特性的综合。
- 众包(Crowdsourcing):利用大众的力量完成任务,通常通过在线平台征集志愿者或付费工作者。
- 评估指标(Metrics):衡量数据集质量的量化标准。