大模型时代:数据质量管理

大模型的三要素之一便是数据,没有数据作为基石,就没有大模型的诞生。

大模型的预训练就是,在大规模无标注数据集上进行模型的训练,目标是让模型学习自然语言的基础表达、上下文信息和语义知识,为后续任务提供一个通用的、丰富的语言表示基础(把全网数据都学习一遍)。那么在数据的质量管理就尤为重要了。

一、数据质量管理

数据质量管理主要用来解决“数据质量现状如何,谁来改进, 如何提高,怎样考核”的问题。数据质量也是数据治理流程里的核心,关系着后续任务的准确度。

可以说高质量的数据是一切数据应用的基础。对大模型也是如此,高质量的数据,将会获得一个高精准度的大模型。

1.1 数据质量问题产生来源

在进行数据质量管理的时候,首先的一个便是数据质量问题产生的来源。原因有很多方面,比如技术、管理、流程等。造成质量问题的原因通常很复杂。

我看了很多资料,大差不差的:

  • 业务源系统变更

当业务流程或系统发生变更时,如果没有正确地更新数据流程或数据模型,可能会导致数据质量问题。

  • 数据开发BUG

在数据开发过程中,如果存在编程错误或逻辑错误,可能会导致数据不准确或不一致。

  • 物理资源不足

如果处理数据所需的硬件资源(如存储、内存、CPU等)不足,可能会影响数据处理的效率和质量。

  • 基础设施不稳定

如果支撑数据存储和处理的基础设施(如数据库、网络等)不稳定,可能会导致数据丢失或处理错误。

二、如何提高数据质量

当谈到数据质量管理的时候,必须有一个数据质量评估的标准,有了这个标准,才能知道如何评估数据的质量,才能将数据质量量化,并知道改进的方向,以及如何评估改进后的效果。目前业内认可的数据质量标准有如下几类。

(1)准确性:描述数据是否与其对应客观实体的特征一致。 举例:用户的住址是否准确;某个字段规定应该是英文字符,在其位置上是否存在乱码。

(2)完整性:描述数据是否存在缺失记录或缺失字段。 举例:某个字段不能为null或空字符。

(3)一致性:描述同一实体同一属性的值在不同的系统中是否一致。 举例:男女是否在不同的库表中都使用同一种表述。例如在A系统中,男性表述为1,女性表述为0;在B系统中,男性表述为M,女性表述为F。

(4)有效性:描述数据是否满足用户定义的条件或在一定的取值范围内。 举例:年龄的值域在0~200之间。另一个枚举的有效性例子是银行的币种代码。

(5)唯一性:描述数据是否存在重复记录。 举例:身份证号码不能重复,学号不能重复。

(6)及时性:描述数据的产生和供应是否及时。 举例:生产数据必须在凌晨2:00入库到ODS(OperationalData Store,操作数据层)。

(7)稳定性:描述数据的波动是否稳定,是否在其有效范围内。 举例:产品质量抽样统计的合格率,不会有超过20%的波动范围。

(8)连续性:描述数据的编号是否连续。 举例:有关部门处理环保违法案件,案件的编号必须是连续的。

(9)合理性:描述两个字段之间逻辑关系是否合理。 举例:企业注销时间必须晚于注册时间,自然人的死亡时间必须晚于出生时间。

以上数据质量标准只是一些通用的规则,还可以根据客户数据的实际情况和业务要求对其进行扩展,如进行交叉表数据质量校验等。

3.1 数据质量建设

有了数据质量的评判标准,就可以以此作为参考,对数据进行改正,以提高数据质量,那么又是如何进行数据质量标准进行任务化呢? 这就是数据质量建设的方法->质量稽核

在数据加工任务中,对产出表按照业务规则,设计一些校验逻辑,确保数据的完整性、一致性和准确性,这是提升数据质量最行之有效的方法

通常建议你在数据产出任务运行结束后,启动稽核校验任务对数据结果进行扫描计算,判断是否符合规则预期。如果不符合,就根据提前设定的强弱规则,触发不同的处理流程。

如果是强规则,就立即终止任务加工链路,后续的任务不会执行,并且立即发出电话报警,甚至我们要求,关键任务还要开启循环电话报警,直到故障被认领;如果是弱规则,任务会继续执行。

但是存在风险,这些风险会通过邮件或者短信的方式,通知到数据开发,由人来进一步判断风险严重程度。

3.2 大模型赋能数据质量建设

上面是为了提高数据质量,而实施的一些措施。

需要针对每个任务需要根据数据质量评判标准,进行稽核任务编排,在编排完毕之后需要到表字段里进行校验。

整个流程是比较麻烦的,而且如果你不对数据了解,那么想要高质量的数据,则都得把质量标准流程都走一遍。

因此,思考是否可以利用大模型对数据质量进行校验。

根据通用型质量规则数据对大模型微调,并结合知识库的方式设计流程,最后利用微调后的大模型对数据进行稽核。

(1)大模型微调

数据质量标准,是大数据领域的特定数据。

因此,可以把数据质量标准,制作成问答对,对通用大模型进行微调,让它掌握数据质量的标准规则。

一般而言,可以把最为通用的质量标准进行微调。

(2)知识库

数据来自于不同的场景,那么针对数据的评判是不同的。可以把自己业务领域,对数据质量特定的标准进行嵌入知识库方式,给于大模型准确的回答。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值