本文转载于微信公众号-Python机器学习AI,原文作者写的特别棒,推荐python爱好者去搜索学习。
SHAP 依赖图
SHAP 依赖图用于可视化单个特征对机器学习模型预测结果的影响,具体来说,x 轴是特征值,y 轴是 SHAP 值(度量特征对预测结果的重要性),这些图可以直观地显示出某个特征是对模型预测起正向还是负向作用
代码实现
数据集加载
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams['axes.unicode_minus'] = False
import warnings
warnings.filterwarnings("ignore")
df = pd.read_csv('UCI Heart Disease Dataset.csv')
# 划分特征和目标变量
X = df.drop(['target'], axis=1)
y =