一、The permutation feature importance
置换特征重要性仅对感兴趣的目标特征进行置换,具体的公式如下:
假设=
,保持其他特征值不变,仅仅对
进行打乱,并把每次打乱后的模型损失函数计算出来,重复R次即可得到特征
的重要性。
不难发现,The permutation feature importance仅能用于特征的全局解释。
图例:
二、PDP(部分依赖图,Partial Dependence Plot)
TPFI是固定除了Xj以外的所有特征值。
PDP则是固定Xj的的特征值,并假设所有的特征是独立的,然后将其他所有的特征值进行组合。具体公式如下:
实例中的特征值往往是离散的,即使是离散,计算量依然很大。
假设|xi|代表特征xi集合的大小,那么计算一个特征xj=1的PDP值就需要对特征j以外的所有特征集合大小相乘。即计算次数为: