The permutation feature importance、PDP(部分依赖图,Partial Dependence Plot)、SHAP值简述

一、The permutation feature importance

置换特征重要性仅对感兴趣的目标特征{_{X}}^{}_{j}进行置换,具体的公式如下:

假设{_{X}}^{}_{j}={_{X}}^{}_{1},保持其他特征值不变,仅仅对{_{X}}^{}_{1}进行打乱,并把每次打乱后的模型损失函数计算出来,重复R次即可得到特征{_{X}}^{}_{1}的重要性。

不难发现,The permutation feature importance仅能用于特征的全局解释

图例:

二、PDP(部分依赖图,Partial Dependence Plot)

TPFI是固定除了Xj以外的所有特征值。

PDP则是固定Xj的的特征值,并假设所有的特征是独立的,然后将其他所有的特征值进行组合。具体公式如下:

实例中的特征值往往是离散的,即使是离散,计算量依然很大。

假设|xi|代表特征xi集合的大小,那么计算一个特征xj=1的PDP值就需要对特征j以外的所有特征集合大小相乘。即计算次数为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值