关于粒子滤波在电力负荷预测中的应用 python源代码 在线预测电力负荷,在贝叶斯框架的动态模型

该文介绍了一种基于Python的粒子滤波方法,用于电力负荷的预测。代码依据高级研究复现,涉及贝叶斯动态模型和序列蒙特卡罗方法。文章讨论了粒子滤波的实际问题及解决方案,并提出增强离群值鲁棒性的步骤。通过应用到包含外生变量的状态空间模型,预测法国电力公司的用户负荷,结果进行了详尽分析。
摘要由CSDN通过智能技术生成

关于粒子滤波在电力负荷预测中的应用
python源代码,代码按照高水平文章复现,有详细说明,保证正确
在线预测电力负荷,在贝叶斯框架的动态模型。
提供了顺序蒙特卡罗方法的回顾,并提供了所谓的粒子过滤器推导所需的计算。
还讨论了从它们的使用中产生的实际问题,以及文献中提出的处理它们的一些变体,在可能的情况下给出详细的算法以方便实现。
提出了一个额外的步骤,以帮助使基本粒子滤波器对离群观测更加稳健。
最后,利用该粒子滤波估计了一个包含外生变量的状态空间模型,以预测法国电力公司的用户用电负荷,并对所得到的各种结果进行了讨论。
请添加图片描述

ID:96200637600169671

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值