数值代数及方程数值解:预备知识——问题的适定性

文章目录

本篇文章适合个人复习翻阅,不建议新手入门使用
本篇文章的前置知识:数学分析、高等代数

问题的适定性

记数学问题为 f : X → Y f:X\to Y f:XY,其中X,Y为赋范线性空间,一般来说 f f f 连续;我们希望我们求解的数学问题是数值稳定的,即微小的扰动不会带来很大的影响,我们称这类问题为适定的数学问题

定义:适定问题

  1. 适定的问题:在 x x x 上很小的扰动只会导致 f ( x ) f(x) f(x) 很小的改变
  2. 绝对条件数:
    κ ^ ( x ) = lim ⁡ δ → 0 sup ⁡ ∣ ∣ δ x ∣ ∣ ≤ δ ∣ ∣ δ f ∣ ∣ ∣ ∣ δ x ∣ ∣ \hat{\kappa}(x)=\lim\limits_{\delta\to 0}\sup\limits_{||\delta x||\leq \delta}\dfrac{||\delta f||}{||\delta x||} κ^(x)=δ0lim∣∣δx∣∣δsup∣∣δx∣∣∣∣δf∣∣简记为
    sup ⁡ δ x ∣ ∣ δ f ∣ ∣ ∣ ∣ δ x ∣ ∣ \sup\limits_{\delta x}\dfrac{||\delta f||}{||\delta x||} δxsup∣∣δx∣∣∣∣δf∣∣
  3. 绝对意义下的适定性:若 κ ^ ( x ) \hat{\kappa}(x) κ^(x) 较小,则称问题是绝对适定的
  4. 相对条件数: κ ( x ) = lim ⁡ δ → 0 sup ⁡ ∣ ∣ δ x ∣ ∣ ≤ δ ∣ ∣ δ f ∣ ∣ ∣ ∣ δ x ∣ ∣ / ∣ ∣ δ x ∣ ∣ ∣ ∣ x ∣ ∣ \kappa(x)=\lim\limits_{\delta\to 0}\sup\limits_{||\delta x||\leq \delta}\dfrac{||\delta f||}{||\delta x||}/{\dfrac{||\delta x||}{||x||}} κ(x)=δ0lim∣∣δx∣∣δsup∣∣δx∣∣∣∣δf∣∣/∣∣x∣∣∣∣δx∣∣ 简记为
    sup ⁡ δ x ∣ ∣ δ f ∣ ∣ ∣ ∣ δ x ∣ ∣ / ∣ ∣ δ x ∣ ∣ ∣ ∣ x ∣ ∣ \sup\limits_{\delta x}\dfrac{||\delta f||}{||\delta x||}/{\dfrac{||\delta x||}{||x||}} δxsup∣∣δx∣∣∣∣δf∣∣/∣∣x∣∣∣∣δx∣∣
  5. 相对意义下的适定性:若 κ ( x ) \kappa(x) κ(x) 较小,则称问题是相对适定的

命题:可微问题的适定性
f f f 可微,则
κ ^ ( x ) = ∣ ∣ J ( x ) ∣ ∣ , κ ( x ) = ∣ ∣ J ( x ) ∣ ∣ ∣ ∣ f ( x ) ∣ ∣ / ∣ ∣ x ∣ ∣ \hat{\kappa}(x)=||J(x)||,\kappa (x)=\dfrac{||J(x)||}{||f(x)||/||x||} κ^(x)=∣∣J(x)∣∣,κ(x)=∣∣f(x)∣∣/∣∣x∣∣∣∣J(x)∣∣其中 J ( x ) J(x) J(x) f f f x x x 处的Jacobi矩阵

命题:计算矩阵特征值的适定性
一般而言,计算对称阵特征值适定,计算非对称阵不适定

命题:解线性方程组AX=b问题的适定性
A ∈ C m × m A\in\mathrm{C}^{m\times m} ACm×m 非奇异

  1. 对于给定 x x x 计算 b b b 的问题:
    κ = ∣ ∣ A ∣ ∣ ∣ ∣ x ∣ ∣ ∣ ∣ b ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ A − 1 ∣ ∣ \kappa=||A||\dfrac{||x||}{||b||}\leq ||A||\cdot||A^{-1}|| κ=∣∣A∣∣∣∣b∣∣∣∣x∣∣∣∣A∣∣∣∣A1∣∣2范数意义下的取等条件: x x x A A A 最小奇异值 σ m \sigma_m σm 对应的右奇异向量的倍数
  2. 对于给定 b b b 计算 x x x 问题:
    κ = ∣ ∣ A − 1 ∣ ∣ ∣ ∣ b ∣ ∣ ∣ ∣ x ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ A − 1 ∣ ∣ \kappa=||A^{-1}||\dfrac{||b||}{||x||}\leq ||A||\cdot||A^{-1}|| κ=∣∣A1∣∣∣∣x∣∣∣∣b∣∣∣∣A∣∣∣∣A1∣∣2范数意义下的取等条件: x x x A A A 最大奇异值 σ 1 \sigma_1 σ1 对应的左奇异向量的倍数
  3. 对于给定 b b b 计算 x x x 问题的关于 A A A 的扰动: κ = ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ A − 1 ∣ ∣ \kappa=||A||\cdot||A^{-1}|| κ=∣∣A∣∣∣∣A1∣∣

κ ( A ) = ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ A − 1 ∣ ∣ \kappa(A)=||A||\cdot||A^{-1}|| κ(A)=∣∣A∣∣∣∣A1∣∣ A A A 关于范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣ 的条件数,若 κ ( A ) \kappa(A) κ(A) 较小,则称 A A A 适定;若 κ = ∣ ∣ A ∣ ∣ \kappa=||A|| κ=∣∣A∣∣ 的较大,则称 A A A 病态;

注:规定若A奇异,则记 κ ( A ) = ∞ \kappa(A)=\infty κ(A)=

命题
在2范数意义下, κ ( A ) = σ 1 σ m \kappa(A)=\dfrac{\sigma_1}{\sigma_m} κ(A)=σmσ1

命题
若A为满秩的长方形方阵,则 κ ( A ) = ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ A + ∣ ∣ \kappa(A)=||A||\cdot||A^+|| κ(A)=∣∣A∣∣∣∣A+∣∣;在2范数意义下, κ ( A ) = σ 1 σ m \kappa(A)=\dfrac{\sigma_1}{\sigma_m} κ(A)=σmσ1

参考书籍
《数值分析》Timothy Sauer 著,裴玉茹,马赓宇 译
《Numerical Linear Algebra》Lloyd N.Trefethen , David Bau 著

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值