高等代数复习:矩阵

本文详细介绍了高等代数中矩阵的相关概念,包括相抵标准型、初等矩阵(行互换、数乘及加到另一行)、伴随矩阵的定义与性质、特殊矩阵(循环矩阵和幂零Jordan块)、友阵与特征矩阵的刻画,以及矩阵迹的定义和性质。这些内容对于个人复习和深入理解矩阵理论至关重要,但不适合作为新手入门材料。
摘要由CSDN通过智能技术生成

本篇文章适合个人复习翻阅,不建议新手入门使用
参考书:《高等代数学》谢启鸿 姚慕生 吴泉水 编著

1.相抵标准型

定义相抵:设矩阵A,B,若A经有限次初等变换后变成B,则称A与B相抵

相抵标准型:
任一 m × n m\times n m×n型矩阵 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n必相抵于以下 m × n m\times n m×n矩阵
( 1 ⋯ 0 0 ⋯ 0 ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋯ 1 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 0 ⋯ 0 ) \begin{pmatrix} 1&\cdots&0&0&\cdots&0\\ \vdots&\ddots&\vdots&\vdots& &\vdots\\ 0&\cdots&1&0&\cdots&0\\ 0&\cdots&0&0&\cdots&0\\ \vdots& &\vdots&\vdots& &\vdots\\ 0&\cdots&0&0&\cdots&0\\ \end{pmatrix} 1000010000000000
其中矩阵的前r个对角元素为1,其余为0,该矩阵称为A的相抵标准型

任一 m × n m\times n m×n型矩阵 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n必可化为阶梯型矩阵

命题:
若矩阵 A , B A,B A,B 相抵,则存在可逆阵 P , Q P,Q P,Q ,使得 B = P A Q B=PAQ B=PAQ

2.初等矩阵

第一类初等矩阵 P i j P_{ij} Pij:表示将单位阵的ij行(列)进行互换后得到的矩阵
( 1 ⋱ 0 ⋯ 1 ⋮ ⋮ 1 ⋯ 0 ⋱ 1 ) \begin{pmatrix} 1& & & & & & \\ &\ddots& & & & & \\ & &0&\cdots& 1& &\\ & & \vdots& &\vdots& & \\ & &1&\cdots&0& &\\ & & & & & \ddots& \\ & & & & & &1 \\ \end{pmatrix} 101101

第二类初等矩阵 P i ( c ) P_i(c) Pi(c):表示将单位阵的第i行(列)乘以常数c倍后得到的矩阵
( 1 ⋱ c ⋱ 1 ) \begin{pmatrix} 1& & & & \\ & \ddots& & & \\ & & c& & \\ & & & \ddots& \\ & & & & 1\\ \end{pmatrix} 1c1

第三类初等矩阵 T i j ( c ) T_{ij}(c) Tij(c):表示将单位阵的第i行(列)乘以c倍加到第j行(列)后得到的矩阵
( 1 ⋱ 1 ⋯ 0 ⋮ ⋮ c ⋯ 1 ⋱ 1 ) \begin{pmatrix} 1& & & & & & \\ &\ddots& & & & & \\ & &1&\cdots&0& &\\ & & \vdots& &\vdots& & \\ & &c&\cdots&1& &\\ & & & & & \ddots& \\ & & & & & &1 \\ \end{pmatrix} 11c011

注:

  • 对矩阵A做一次初等行变换相当于对A左乘一个初等矩阵
  • 做一次初等列变换相当于对A右乘一个初等矩阵
  • 初等变换不改变矩阵的奇异性

3.伴随矩阵

定义:
设A为n阶方阵,则 ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) \begin{pmatrix} A_{11}&A_{21}&\cdots&A_{n1}\\ A_{12}&A_{22}&\cdots&A_{n2}\\ \vdots&\vdots& &\vdots\\ A_{1n}&A_{2n}&\cdots&A_{nn}\\ \end{pmatrix} A11A12A1nA21A22A2nAn1An2Ann 称为A的伴随;

基本性质:

  • A ⋅ A ∗ = ∣ A ∣ ⋅ I n A\cdot A^*=|A|\cdot I_n AA=AIn
  • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1
  • ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A

分块矩阵的伴随
( A O O B ) ∗ = ( ∣ B ∣ ⋅ A ∗ O O ∣ A ∣ ⋅ B ∗ ) \begin{pmatrix} A&O\\ O&B\\ \end{pmatrix}^*=\begin{pmatrix} |B|\cdot A^*& O\\ O&|A|\cdot B^*\\ \end{pmatrix} (AOOB)=(BAOOAB)

4.特殊矩阵

4.1 循环矩阵

设n阶基础循环矩阵
A = ( 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 1 0 0 ⋯ 0 ) A=\begin{pmatrix} 0&1&0&\cdots&0\\ 0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&&\vdots\\ 0&0&0&\cdots&1\\ 1&0&0&\cdots&0\\ \end{pmatrix} A= 0001100001000010

A k = ( O I n − k I k O ) , 1 ≤ k ≤ n A^k=\begin{pmatrix} O&I_{n-k}\\ I_k&O\\ \end{pmatrix},1\leq k\leq n Ak=(OIkInkO),1kn
证明:
记A为 A = ( e n , e 1 , … , e n − 1 ) , A e i = e i − 1 A=(e_n,e_1,\dots,e_{n-1}),Ae_i=e_{i-1} A=(en,e1,,en1),Aei=ei1,自然地可证明 A k A^k Ak

4.2 幂零Jordan块

设n阶幂零Jordan块
A = ( 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 0 0 0 ⋯ 0 ) A=\begin{pmatrix} 0&1&0&\cdots&0\\ 0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&&\vdots\\ 0&0&0&\cdots&1\\ 0&0&0&\cdots&0\\ \end{pmatrix} A= 0000100001000010

A k = ( O I n − k O O ) , 1 ≤ k ≤ n A^k=\begin{pmatrix} O&I_{n-k}\\ O&O\\ \end{pmatrix} ,1\leq k\leq n Ak=(OOInkO),1kn

4.3 友阵

设首一多项式 f ( x ) = x n + a 1 x n − 1 + ⋯ + a n − 1 x + a n f(x)=x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n f(x)=xn+a1xn1++an1x+an,则 f ( x ) f(x) f(x)的友阵为
C ( f ( x ) ) = ( 0 0 ⋯ 0 − a n 1 0 ⋯ 0 − a n − 1 0 1 ⋯ 0 − a n − 2 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 − a 1 ) C(f(x))=\begin{pmatrix} 0&0&\cdots&0&-a_n\\ 1&0&\cdots&0&-a_{n-1}\\ 0&1&\cdots&0&-a_{n-2}\\ \vdots&\vdots&&\vdots&\vdots\\ 0&0&\cdots&1&-a_1\\ \end{pmatrix} C(f(x))= 010000100001anan1an2a1
其刻画为 ∣ x I n − C ( f ( x ) ) ∣ = f ( x ) |xI_n-C(f(x))|=f(x) xInC(f(x))=f(x)

注: C ( f ( x ) ) C(f(x)) C(f(x))的转置 F ( f ( x ) ) F(f(x)) F(f(x))称为 f ( x ) f(x) f(x)的Frobenius块

4.4 零矩阵的刻画

设A为n阶对称阵,则A是零矩阵当且仅当对任意n维列向量 α \alpha α,有 α ′ A α = 0 \alpha'A\alpha=0 αAα=0

4.5 反对称阵的刻画

设A是n阶方阵,则A是反对称阵当且仅当对任意n维列向量 α \alpha α,有 α ′ A α = 0 \alpha'A\alpha=0 αAα=0

4.6 循环矩阵

形如以下的矩阵称作循环矩阵
( a 1 a 2 a 3 ⋯ a n a n a 1 a 2 ⋯ a n − 1 a n − 1 a n a 1 ⋯ a n − 2 ⋮ ⋮ ⋮ ⋮ a 2 a 3 a 4 ⋯ a 1 ) \begin{pmatrix} a_1&a_2&a_3&\cdots&a_n\\ a_n&a_1&a_2&\cdots&a_{n-1}\\ a_{n-1}&a_n&a_1&\cdots&a_{n-2}\\ \vdots&\vdots&\vdots&&\vdots\\ a_2&a_3&a_4&\cdots&a_1\\ \end{pmatrix} a1anan1a2a2a1ana3a3a2a1a4anan1an2a1
其重要的一个性质是循环矩阵之积仍为循环矩阵

证明:
设基础循环矩阵
J = ( O I n − 1 1 O ) J=\begin{pmatrix} O&I_{n-1}\\ 1&O\\ \end{pmatrix} J=(O1In1O)

A = a 1 I n + a 2 J + a 3 J 2 + ⋯ + a n J n − 1 A=a_1I_n+a_2J+a_3J^2+\cdots+a_nJ^{n-1} A=a1In+a2J+a3J2++anJn1
其余易证

5.矩阵的迹

定义
t r ( A ) = ∑ i = 1 n a i i tr(A)=\sum\limits_{i=1}^na_{ii} tr(A)=i=1naii

性质

  • 线性性
  • 乘法可交换性

刻画
f f f 是数域 F \mathbb{F} F n n n 阶矩阵集合到 F \mathbb{F} F 的一个映射,其满足

  1. 对任意 n n n 矩阵 A , B A,B A,B f ( A + B ) = f ( A ) + f ( B ) f(A+B)=f(A)+f(B) f(A+B)=f(A)+f(B)
  2. 对任意 n n n 矩阵 A A A F \mathbb{F} F 中的数 k k k f ( k A ) = k f ( A ) f(kA)=kf(A) f(kA)=kf(A)
  3. 对任意 n n n 矩阵 A , B A,B A,B f ( A B ) = f ( B A ) f(AB)=f(BA) f(AB)=f(BA)
  4. f ( I n ) = n f(I_n)=n f(In)=n

f f f 就是迹

证明:
只需证 f ( E i j ) = δ i j f(E_{ij})=\delta_{ij} f(Eij)=δij ,其中 E i j E_{ij} Eij 表示基础矩阵

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值