数学分析复习:基本初等函数的构造

本文详细介绍了基本初等函数的构造,包括多项式函数、指数函数(及其群同态性质)、三角函数(如正弦和余弦的构造以及Euler公式)、对数函数(定义、性质和与指数函数的关系)以及幂函数。文章适合个人复习,强调了函数的单调性和连续性特点。
摘要由CSDN通过智能技术生成

本篇文章适合个人复习翻阅,不建议新手入门使用

基本初等函数的构造

1. 多项式函数的构造

多项式函数是指如下的函数
R → R , x ↦ a d x d + a d − 1 x d − 1 + ⋯ + a 1 x + a 0 \mathbb{R}\to\mathbb{R},x\mapsto a_dx^d+a_{d-1}x^{d-1}+\cdots+a_1x+a_0 RR,xadxd+ad1xd1++a1x+a0其中 a 0 , … , a d ∈ R a_0,\dots,a_d\in\mathbb{R} a0,,adR

注:这里的幂均为整数幂,由域公理即可定义,但现在我们还未定义一般的幂

2. 指数函数的构造

定义:(指数函数)
e x p : R → R , x ↦ e x p ( x ) = e x = ∑ k = 0 ∞ x k k ! exp:\mathbb{R}\to\mathbb{R},x\mapsto exp(x)=e^x=\sum\limits_{k=0}^{\infty}\frac{x^k}{k!} exp:RR,xexp(x)=ex=k=0k!xk注:需验证良定义性:即每一点均收敛(只需将阶乘放缩为幂函数)

注:在定义以 e 为底的对数函数之后,再来定义一般的指数函数

性质

  • 指数函数是一个群同态:即保持 ( R , + ) (\mathbb{R},+) (R,+) ( R > 0 , ⋅ ) (\mathbb{R}_{>0},\cdot) (R>0,) 的运算 e x + y = e x ⋅ e y e^{x+y}=e^x\cdot e^y ex+y=exey

证明
e x ⋅ e y = ( ∑ k = 0 ∞ x k k ! ) ( ∑ k = 0 ∞ y k k ! ) = ∑ k = 0 ∞ ∑ i + j = k x i i ! x j j ! = ∑ k = 0 ∞ 1 k ! ∑ i + j = k k ! i ! j ! x i ⋅ y j = ∑ k = 0 ∞ 1 k ! ( x + y ) k = e x + y \begin{split} e^x\cdot e^y&=(\sum\limits_{k=0}^{\infty}\frac{x^k}{k!})(\sum\limits_{k=0}^{\infty}\frac{y^k}{k!})\\ &=\sum\limits_{k=0}^{\infty}\sum\limits_{i+j=k}\frac{x^i}{i!}\frac{x^j}{j!}\\ &=\sum\limits_{k=0}^{\infty}\frac{1}{k!}\sum\limits_{i+j=k}\frac{k!}{i!j!}x^i\cdot y^j\\ &=\sum\limits_{k=0}^{\infty}\frac{1}{k!}(x+y)^k=e^{x+y} \end{split} exey=(k=0k!xk)(k=0k!yk)=k=0i+j=ki!xij!xj=k=0k!1i+j=ki!j!k!xiyj=k=0k!1(x+y)k=ex+y

3. 三角函数的构造

定义:(正弦函数、余弦函数)
cos ⁡ z = e i z + e − i z 2 , sin ⁡ z = e i z − e − i z 2 i \cos{z}=\frac{e^{iz}+e^{-iz}}{2},\sin{z}=\frac{e^{iz}-e^{-iz}}{2i} cosz=2eiz+eiz,sinz=2ieizeiz由此导出 Euler 公式
e i z = cos ⁡ z + i sin ⁡ z e^{iz}=\cos{z}+i\sin{z} eiz=cosz+isinz注:正切、余切等函数仍和中学的定义一样,通过正余弦的商定义

性质

  • ( cos ⁡ z ) 2 + ( sin ⁡ z ) 2 = 1 (\cos{z})^2+(\sin{z})^2=1 (cosz)2+(sinz)2=1
  • ∣ sin ⁡ z ∣ ≤ 1 , ∣ cos ⁡ z ∣ ≤ 1 |\sin{z}|\leq 1,|\cos{z}|\leq 1 sinz1,cosz1
  • 和差化积公式、和角倍角公式等三角公式

类似三角函数可定义如下所谓双曲正弦和双曲余弦函数
定义:双曲正弦,双曲余弦
sh ⁡ x = e x − e − x 2 , ch ⁡ x = e x + e − x 2 \sh{x}=\frac{e^x-e^{-x}}{2},\ch{x}=\frac{e^x+e^{-x}}{2} shx=2exex,chx=2ex+ex

4. 对数函数的构造

我们希望用指数函数的反函数去定义对数函数,为此先引入一些结论
命题
设严格单调的连续函数 f : [ a , b ] → R f:[a,b]\to\mathbb{R} f:[a,b]R,那么 f f f 是从 [ a , b ] [a,b] [a,b] [ f ( a ) , f ( b ) ] [f(a),f(b)] [f(a),f(b)] 的双射,且其逆映射 f − 1 f^{-1} f1 连续

证明
由严格单调性知 f f f 是单射,由介值定理知 f f f 是满射,故逆映射存在。
f − 1 f^{-1} f1 也单调并与 f f f 的单调性一致(反证法易证)
连续性:用反证法,若 f − 1 f^{-1} f1 有不连续点 x 0 x_0 x0,则可构造非空开区间
( lim ⁡ x → x 0 − f − 1 ( x ) , lim ⁡ x → x 0 + f − 1 ( x ) ) (\lim\limits_{x\to x_0^-}f^{-1}(x),\lim\limits_{x\to x_0^+}f^{-1}(x)) (xx0limf1(x),xx0+limf1(x))由构造可知,这个开区间一定不在 [ a , b ] [a,b] [a,b] 内,这不可能

定义:以 e 为底的对数函数
由于指数函数 e x p : R → R > 0 , x ↦ e x exp:\mathbb{R}\to\mathbb{R}_{>0},x\mapsto e^x exp:RR>0,xex 是双射,则我们用 l o g : R > 0 → R log:\mathbb{R}_{>0}\to\mathbb{R} log:R>0R 表示 exp 的反函数,称为以 e 为底的对数函数

性质

  1. R > 0 \mathbb{R}_{>0} R>0 上的单调递增的连续函数
  2. 对任意 x , y > 0 x,y>0 x,y>0,有 log ⁡ ( x y ) = log ⁡ ( x ) + log ⁡ ( y ) \log(xy)=\log(x)+\log(y) log(xy)=log(x)+log(y)

定义:对数函数
a , x ∈ R > 0 a,x\in\mathbb{R}_{>0} a,xR>0,定义对数函数为
log ⁡ a x = log ⁡ x log ⁡ a \log_a{x}=\frac{\log{x}}{\log{a}} logax=logalogx

性质

  1. R > 0 \mathbb{R}_{>0} R>0 上的单调的连续函数
  2. 对任意 x , y > 0 x,y>0 x,y>0,有 log ⁡ a ( x y ) = log ⁡ a ( x ) + log ⁡ a ( y ) \log_a(xy)=\log_a(x)+\log_a(y) loga(xy)=loga(x)+loga(y)

定义:指数函数
a ∈ R > 0 , x ∈ R a\in\mathbb{R}_{>0},x\in\mathbb{R} aR>0,xR,定义指数函数为
a x = e log ⁡ a x a^x=e^{\log_a{x}} ax=elogax

性质

  1. R \mathbb{R} R 上的单调的连续函数
  2. a log ⁡ a x = x a^{\log_a{x}}=x alogax=x
  3. a x + y = a x a y a^{x+y}=a^xa^y ax+y=axay

5. 幂函数的构造

定义:幂函数
a ∈ R , x ∈ R > 0 a\in\mathbb{R},x\in\mathbb{R}_{>0} aR,xR>0,定义幂函数为
x α = e α log ⁡ x x^{\alpha}=e^{\alpha\log{x}} xα=eαlogx

性质

  1. R > 0 \mathbb{R}_{>0} R>0 上的连续函数
  2. ( x y ) α = x α y α , ( x α ) β = x α β (xy)^{\alpha}=x^{\alpha}y^{\alpha},(x^{\alpha})^{\beta}=x^{\alpha\beta} (xy)α=xαyα,(xα)β=xαβ

参考书:

  • 《数学分析》陈纪修 於崇华 金路
  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
  • 23
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值