数学分析复习:等价量的概念

本篇文章适合个人复习翻阅,不建议新手入门使用

等价量

定义:无穷小量、无穷大量
lim ⁡ x → x 0 f ( x ) = 0 \lim\limits_{x\to x_0}f(x)=0 xx0limf(x)=0,则称当 x → x 0 x\to x_0 xx0 时, f ( x ) f(x) f(x) 是无穷小量;若 lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x\to x_0}f(x)=\infty xx0limf(x)=,则称当 x → x 0 x\to x_0 xx0 时, f ( x ) f(x) f(x) 是无穷大量

定义:无穷小量的比较
f , g f,g f,g 都是 x → x 0 x\to x_0 xx0 处的无穷小量且 g ( x ) g(x) g(x) x 0 x_0 x0 的去心邻域内不为 0

  1. lim ⁡ x → x 0 f ( x ) g ( x ) = 0 \lim\limits_{x\to x_0}\frac{f(x)}{g(x)}=0 xx0limg(x)f(x)=0,则称 f ( x ) f(x) f(x) 是比 g ( x ) g(x) g(x) 高阶的无穷小,记作 f ( x ) = o ( g ( x ) ) , x → x 0 f(x)=o(g(x)),x\to x_0 f(x)=o(g(x)),xx0
  2. lim ⁡ x → x 0 f ( x ) g ( x ) \lim\limits_{x\to x_0}\frac{f(x)}{g(x)} xx0limg(x)f(x) 为非零有限数,则称 f ( x ) f(x) f(x) 是与 g ( x ) g(x) g(x) 同阶的无穷小
  3. lim ⁡ x → x 0 f ( x ) g ( x ) = 1 \lim\limits_{x\to x_0}\frac{f(x)}{g(x)}=1 xx0limg(x)f(x)=1 ,则称 f ( x ) f(x) f(x) 是与 g ( x ) g(x) g(x) 等价的无穷小,记作 f ( x ) ∼ g ( x ) ( x → x 0 ) f(x)\sim g(x)(x\to x_0) f(x)g(x)(xx0) f ( x ) = g ( x ) + o ( g ( x ) ) ( x → x 0 ) f(x)=g(x)+o(g(x))(x\to x_0) f(x)=g(x)+o(g(x))(xx0)
  4. lim ⁡ x → x 0 sup ⁡ ∣ f ( x ) ∣ ∣ g ( x ) ∣ \lim\limits_{x\to x_0}\sup\frac{|f(x)|}{|g(x)|} xx0limsupg(x)f(x) 为有限数,则称 f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x) 是有界量,记为 f ( x ) = O ( g ( x ) ) , x → x 0 f(x)=O(g(x)),x\to x_0 f(x)=O(g(x)),xx0

定义:无穷大量的比较
f , g f,g f,g 都是 x → x 0 x\to x_0 xx0 处的无穷大量且 g ( x ) g(x) g(x) x 0 x_0 x0 的去心邻域内不为 0

  1. lim ⁡ x → x 0 f ( x ) g ( x ) = ∞ \lim\limits_{x\to x_0}\frac{f(x)}{g(x)}=\infty xx0limg(x)f(x)=,则称 f ( x ) f(x) f(x) 是比 g ( x ) g(x) g(x) 高阶的无穷大
  2. lim ⁡ x → x 0 f ( x ) g ( x ) \lim\limits_{x\to x_0}\frac{f(x)}{g(x)} xx0limg(x)f(x) 为非零有限数,则称 f ( x ) f(x) f(x) 是与 g ( x ) g(x) g(x) 同阶的无穷大
  3. lim ⁡ x → x 0 f ( x ) g ( x ) = 1 \lim\limits_{x\to x_0}\frac{f(x)}{g(x)}=1 xx0limg(x)f(x)=1 ,则称 f ( x ) f(x) f(x) 是与 g ( x ) g(x) g(x) 等价的无穷大,记作 f ( x ) ∼ g ( x ) ( x → x 0 ) f(x)\sim g(x)(x\to x_0) f(x)g(x)(xx0)
  4. lim ⁡ x → x 0 sup ⁡ ∣ f ( x ) ∣ ∣ g ( x ) ∣ \lim\limits_{x\to x_0}\sup\frac{|f(x)|}{|g(x)|} xx0limsupg(x)f(x) 为有限数,则称 f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x) 是有界量,记为 f ( x ) = O ( g ( x ) ) , x → x 0 f(x)=O(g(x)),x\to x_0 f(x)=O(g(x)),xx0

注:无穷小(大)量的比较一般是让我们了解不同函数趋于0或趋于无穷大的速度快慢

例子
求证: lim ⁡ x → ∞ x k a x = 0 ( a > 1 , k ∈ N + ) \lim\limits_{x\to\infty}\frac{x^k}{a^x}=0(a>1,k\in\mathbb{N}^+) xlimaxxk=0(a>1,kN+) 这说明指数函数在无穷远处是比幂函数高阶的无穷大量

证明思路(二项式定理)
由于 0 < x k a x < ( [ x ] + 1 ) k a [ x ] 0<\frac{x^k}{a^x}<\frac{([x]+1)^k}{a^{[x]}} 0<axxk<a[x]([x]+1)k故只需证 lim ⁡ n → ∞ n + 1 ( a k ) n = 0 \lim\limits_{n\to\infty}\frac{n+1}{(\sqrt[k]{a})^n}=0 nlim(ka )nn+1=0,注意到
n + 1 ( a k ) n < 2 n 1 + n ( a k − 1 ) + n ( n − 1 ) 2 ( a k − 1 ) 2 + ⋯ \begin{split} \frac{n+1}{(\sqrt[k]{a})^n}&<\frac{2n}{1+n(\sqrt[k]{a}-1)+\frac{n(n-1)}{2}(\sqrt[k]{a}-1)^2+\cdots} \end{split} (ka )nn+1<1+n(ka 1)+2n(n1)(ka 1)2+2n其余容易

定义:等价量
等价无穷大量或等价无穷小量统称为等价量,等价量在极限运算中可以互相替换

命题:常用等价量

  1. ln ⁡ ( x + 1 ) ∼ x ∼ e x − 1 ∼ tan ⁡ x ∼ sin ⁡ x ∼ arctan ⁡ x ( x → 0 ) \ln{(x+1)}\sim x\sim e^x-1\sim \tan{x}\sim \sin{x}\sim \arctan{x}(x\to 0) ln(x+1)xex1tanxsinxarctanx(x0)
  2. ( 1 + x ) a ∼ 1 + a x ( x → 0 ) (1+x)^a\sim 1+ax(x\to 0) (1+x)a1+ax(x0)
  3. x + x ∼ x ( x → ∞ ) \sqrt{x+\sqrt{x}}\sim \sqrt{x}(x\to\infty) x+x x (x)
  4. x + x ∼ x 1 4 ( x → 0 + ) \sqrt{x+\sqrt{x}}\sim x^{\frac{1}{4}}(x\to 0^+) x+x x41(x0+)

参考书:

  • 《数学分析》陈纪修 於崇华 金路
  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值