数学分析复习:无穷乘积

本篇文章适合个人复习翻阅,不建议新手入门使用

无穷乘积

设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n1,设对任意 n , a n ≠ 0 n,a_n\neq 0 n,an=0,称 ∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n1an 为无穷乘积,称 P n = a 1 ⋅ a 2 ⋯ a n P_n=a_1\cdot a_2\cdots a_n Pn=a1a2an 为部分积

1. 定义、性质

定义:无穷乘积的收敛性
若数列 { P n } n ≥ 1 \{P_n\}_{n\geq 1} {Pn}n1 的极限存在且不为 0 ,则称无穷乘积 ∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n1an 收敛,记 ∏ n ≥ 1 a n = lim ⁡ n → ∞ P n \prod\limits_{n\geq 1}a_n=\lim\limits_{n\to\infty}P_n n1an=nlimPn

性质:

  • lim ⁡ n → ∞ a n = 1 \lim\limits_{n\to\infty}a_n=1 nliman=1
  • lim ⁡ m → ∞ ∏ n = m + 1 ∞ a n = 1 \lim\limits_{m\to\infty}\prod\limits_{n=m+1}^{\infty}a_n=1 mlimn=m+1an=1

2. Cauchy收敛准则

命题:无穷乘积的Cauchy收敛准则
∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n1an 收敛当且仅当对任意 ε > 0 \varepsilon>0 ε>0,存在 N N N ,使得对任意的 n ≥ N n\geq N nN,任意 p ≥ 0 p\geq 0 p0,都有
∣ a n ⋅ a n + 1 ⋯ a n + p − 1 ∣ < ε |a_n\cdot a_{n+1}\cdots a_{n+p}-1|<\varepsilon anan+1an+p1∣<ε

证明思路
必要性:类似实数列的Cauchy收敛准则的证明方法
充分性:只需证 { P n } \{P_n\} {Pn} 是 Cauchy 列(需要先证序列有界),且 lim ⁡ n → ∞ P n ≠ 0 \lim\limits_{n\to\infty}P_n\neq 0 nlimPn=0

3. 正项级数和无穷乘积的联系

命题
{ a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n1 是正数的数列,则下列等价

  • ∏ n ≥ 1 ( 1 + a n ) \prod\limits_{n\geq 1}(1+a_n) n1(1+an) 收敛
  • ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 收敛

证明思路:
(1)推(2): ∑ n = 1 k a n ≤ ∏ n = 1 k ( 1 + a n ) ≤ ∏ n = 1 ∞ ( 1 + a n ) \sum\limits_{n=1}^ka_n\leq \prod\limits_{n=1}^k(1+a_n)\leq \prod\limits_{n=1}^{\infty}(1+a_n) n=1kann=1k(1+an)n=1(1+an)单调有界数列必收敛
(2)推(1): ∏ n = 1 k ( 1 + a n ) ≤ ∏ n = 1 k e a k ≤ e x p ( ∑ n = 1 k a n ) ≤ e x p ( ∑ n = 1 ∞ a n ) \prod\limits_{n=1}^k(1+a_n)\leq \prod\limits_{n=1}^ke^{a_k}\leq exp(\sum\limits_{n=1}^ka_n)\leq exp(\sum\limits_{n=1}^{\infty}a_n) n=1k(1+an)n=1keakexp(n=1kan)exp(n=1an)单调有界数列必收敛

推论
设数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n1 ,若 ∏ n = 1 ∞ ( 1 + ∣ a n ∣ ) \prod\limits_{n=1}^{\infty}(1+|a_n|) n=1(1+an) 收敛,则 ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1(1+an) 收敛。特别地,若 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 绝对收敛,则 ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1(1+an) 收敛

证明思路
只需注意到 ∣ ∏ n = k k + p ( 1 + a n ) − 1 ∣ ≤ ∏ n = k k + p ( 1 + ∣ a n ∣ ) − 1 |\prod_{n=k}^{k+p}(1+a_n)-1|\leq \prod_{n=k}^{k+p}(1+|a_n|)-1 n=kk+p(1+an)1∣n=kk+p(1+an)1

命题
设数列 { a n } \{a_n\} {an} 满足 0 < a n < 1 0<a_n<1 0<an<1,则 ∏ n = 1 ∞ ( 1 − a n ) \prod\limits_{n=1}^{\infty}(1-a_n) n=1(1an) 收敛当且仅当 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 收敛

证明
充分性显然
必要性:用反证法
( 1 − a 1 ) ⋯ ( 1 − a n ) ≤ 1 ( 1 + a 1 ) ⋯ ( 1 + a n ) ≤ 1 1 + a 1 + ⋯ + a n → 0 \begin{split} (1-a_1)\cdots(1-a_n)&\leq \frac{1}{(1+a_1)\cdots(1+a_n)}\\ &\leq \frac{1}{1+a_1+\cdots+a_n}\to 0 \end{split} (1a1)(1an)(1+a1)(1+an)11+a1++an10从而 ∏ n = 1 ∞ ( 1 − a n ) = 0 \prod_{n=1}^{\infty}(1-a_n)=0 n=1(1an)=0 ,矛盾

4. 无穷乘积的绝对收敛

命题:
∏ n = 1 ∞ a n \prod\limits_{n=1}^{\infty}a_n n=1an 收敛 当且仅当 ∑ n = 1 ∞ ln ⁡ a n \sum\limits_{n=1}^{\infty}\ln{a_n} n=1lnan 收敛

证明
设部分积 P n P_n Pn 和部分和 S n S_n Sn,则注意到 P n = e S n P_n=e^{S_n} Pn=eSn

推论:若 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an 收敛,则 ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1(1+an) 收敛当且仅当 ∑ n = 1 ∞ a n 2 \sum\limits_{n=1}^{\infty}a_n^2 n=1an2 收敛

定义:
∑ n = 1 ∞ ln ⁡ a n \sum\limits_{n=1}^{\infty}\ln{a_n} n=1lnan 收敛,则称 ∏ n = 1 ∞ a n \prod\limits_{n=1}^{\infty}a_n n=1an 绝对收敛

定理:
a n > − 1 a_n>-1 an>1,则下列等价

  1. ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1(1+an) 绝对收敛
  2. ∏ n = 1 ∞ ( 1 + ∣ a n ∣ ) \prod\limits_{n=1}^{\infty}(1+|a_n|) n=1(1+an) 收敛
  3. ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^{\infty}|a_n| n=1an 收敛

5. 两个有趣的结论

Wallis公式
π 2 = 2 1 ⋅ 2 3 ⋅ 4 3 4 5 ⋯ 2 n 2 n − 1 ⋅ 2 n 2 n + 1 \frac{\pi}{2}=\frac{2}{1}\cdot \frac{2}{3}\cdot\frac{4}{3}\frac{4}{5}\cdots\frac{2n}{2n-1}\cdot\frac{2n}{2n+1} 2π=123234542n12n2n+12n

证明思路
即证 ∏ n = 1 ∞ ( 1 − 1 ( 2 n ) 2 ) = 2 π \prod\limits_{n=1}^{\infty}(1-\frac{1}{(2n)^2})=\frac{2}{\pi} n=1(1(2n)21)=π2注意到部分积
P n = ∏ k = 1 n ( 1 − 1 ( 2 k ) 2 ) = [ ( 2 n − 1 ) ! ! ] 2 [ ( 2 n ) ! ! ] 2 ⋅ ( 2 n + 1 ) P_n=\prod\limits_{k=1}^n(1-\frac{1}{(2k)^2})=\frac{[(2n-1)!!]^2}{[(2n)!!]^2}\cdot (2n+1) Pn=k=1n(1(2k)21)=[(2n)!!]2[(2n1)!!]2(2n+1)考虑 I n = ∫ 0 π 2 sin ⁡ n x d x I_{n}=\int_0^{\frac{\pi}{2}}\sin^n{x}\mathrm{d}x In=02πsinnxdx,则
I 2 n = ( 2 n − 1 ) ! ! ( 2 n ) ! ! ⋅ π 2 , I 2 n + 1 = ( 2 n ) ! ! ( 2 n + 1 ) ! ! I_{2n}=\frac{(2n-1)!!}{(2n)!!}\cdot\frac{\pi}{2},I_{2n+1}=\frac{(2n)!!}{(2n+1)!!} I2n=(2n)!!(2n1)!!2π,I2n+1=(2n+1)!!(2n)!! π 2 P n = I 2 n I 2 n + 1 \frac{\pi}{2}P_n=\frac{I_{2n}}{I_{2n+1}} 2πPn=I2n+1I2n I n I_n In 单调递减得 1 < I 2 n I 2 n + 1 < I 2 n − 1 I 2 n + 1 → 1 1<\frac{I_{2n}}{I_{2n+1}}<\frac{I_{2n-1}}{I_{2n+1}}\to 1 1<I2n+1I2n<I2n+1I2n11,这即得到 lim ⁡ n → ∞ P n = 2 π \lim\limits_{n\to\infty}P_n=\frac{2}{\pi} nlimPn=π2

v i e ˋ t e vi\grave{e}te vieˋte 公式
π 2 = cos ⁡ π 4 ⋅ cos ⁡ π 8 ⋯ cos ⁡ π 2 n \frac{\pi}{2}=\cos{\frac{\pi}{4}}\cdot \cos{\frac{\pi}{8}}\cdots\cos{\frac{\pi}{2^n}} 2π=cos4πcos8πcos2nπ

证明思路
不妨证 ∏ n = 1 ∞ cos ⁡ x 2 n = sin ⁡ x x \prod\limits_{n=1}^{\infty}\cos{\frac{x}{2^n}}=\frac{\sin{x}}{x} n=1cos2nx=xsinx x = π 2 x=\frac{\pi }{2} x=2π,即得结论
由倍角公式易归纳地证得
sin ⁡ x = 2 n ( ∏ k = 1 n cos ⁡ x 2 n ) ⋅ sin ⁡ x 2 n = 2 n sin ⁡ x 2 n P n \sin{x}=2^n(\prod\limits_{k=1}^n\cos{\frac{x}{2^n}})\cdot\sin{\frac{x}{2^n}}=2^n\sin{\frac{x}{2^n}}P_n sinx=2n(k=1ncos2nx)sin2nx=2nsin2nxPn lim ⁡ n → ∞ P n = lim ⁡ n → ∞ sin ⁡ x 2 n sin ⁡ x 2 n = sin ⁡ x x \lim\limits_{n\to\infty}P_n=\lim\limits_{n\to\infty}\frac{\sin{x}}{2^n\sin{\frac{x}{2^n}}}=\frac{\sin{x}}{x} nlimPn=nlim2nsin2nxsinx=xsinx

参考书:

  • 《数学分析》陈纪修 於崇华 金路
  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值