本篇文章适合个人复习翻阅,不建议新手入门使用
无穷乘积
设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n≥1,设对任意 n , a n ≠ 0 n,a_n\neq 0 n,an=0,称 ∏ n ≥ 1 a n \prod\limits_{n\geq 1}a_n n≥1∏an 为无穷乘积,称 P n = a 1 ⋅ a 2 ⋯ a n P_n=a_1\cdot a_2\cdots a_n Pn=a1⋅a2⋯an 为部分积
1. 定义、性质
定义:无穷乘积的收敛性
若数列
{
P
n
}
n
≥
1
\{P_n\}_{n\geq 1}
{Pn}n≥1 的极限存在且不为 0 ,则称无穷乘积
∏
n
≥
1
a
n
\prod\limits_{n\geq 1}a_n
n≥1∏an 收敛,记
∏
n
≥
1
a
n
=
lim
n
→
∞
P
n
\prod\limits_{n\geq 1}a_n=\lim\limits_{n\to\infty}P_n
n≥1∏an=n→∞limPn
性质:
- lim n → ∞ a n = 1 \lim\limits_{n\to\infty}a_n=1 n→∞liman=1
- lim m → ∞ ∏ n = m + 1 ∞ a n = 1 \lim\limits_{m\to\infty}\prod\limits_{n=m+1}^{\infty}a_n=1 m→∞limn=m+1∏∞an=1
2. Cauchy收敛准则
命题:无穷乘积的Cauchy收敛准则
∏
n
≥
1
a
n
\prod\limits_{n\geq 1}a_n
n≥1∏an 收敛当且仅当对任意
ε
>
0
\varepsilon>0
ε>0,存在
N
N
N ,使得对任意的
n
≥
N
n\geq N
n≥N,任意
p
≥
0
p\geq 0
p≥0,都有
∣
a
n
⋅
a
n
+
1
⋯
a
n
+
p
−
1
∣
<
ε
|a_n\cdot a_{n+1}\cdots a_{n+p}-1|<\varepsilon
∣an⋅an+1⋯an+p−1∣<ε
证明思路
必要性:类似实数列的Cauchy收敛准则的证明方法
充分性:只需证
{
P
n
}
\{P_n\}
{Pn} 是 Cauchy 列(需要先证序列有界),且
lim
n
→
∞
P
n
≠
0
\lim\limits_{n\to\infty}P_n\neq 0
n→∞limPn=0
3. 正项级数和无穷乘积的联系
命题
设
{
a
n
}
n
≥
1
\{a_n\}_{n\geq 1}
{an}n≥1 是正数的数列,则下列等价
- ∏ n ≥ 1 ( 1 + a n ) \prod\limits_{n\geq 1}(1+a_n) n≥1∏(1+an) 收敛
- ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1∑∞an 收敛
证明思路:
(1)推(2):
∑
n
=
1
k
a
n
≤
∏
n
=
1
k
(
1
+
a
n
)
≤
∏
n
=
1
∞
(
1
+
a
n
)
\sum\limits_{n=1}^ka_n\leq \prod\limits_{n=1}^k(1+a_n)\leq \prod\limits_{n=1}^{\infty}(1+a_n)
n=1∑kan≤n=1∏k(1+an)≤n=1∏∞(1+an)单调有界数列必收敛
(2)推(1):
∏
n
=
1
k
(
1
+
a
n
)
≤
∏
n
=
1
k
e
a
k
≤
e
x
p
(
∑
n
=
1
k
a
n
)
≤
e
x
p
(
∑
n
=
1
∞
a
n
)
\prod\limits_{n=1}^k(1+a_n)\leq \prod\limits_{n=1}^ke^{a_k}\leq exp(\sum\limits_{n=1}^ka_n)\leq exp(\sum\limits_{n=1}^{\infty}a_n)
n=1∏k(1+an)≤n=1∏keak≤exp(n=1∑kan)≤exp(n=1∑∞an)单调有界数列必收敛
推论
设数列
{
a
n
}
n
≥
1
\{a_n\}_{n\geq 1}
{an}n≥1 ,若
∏
n
=
1
∞
(
1
+
∣
a
n
∣
)
\prod\limits_{n=1}^{\infty}(1+|a_n|)
n=1∏∞(1+∣an∣) 收敛,则
∏
n
=
1
∞
(
1
+
a
n
)
\prod\limits_{n=1}^{\infty}(1+a_n)
n=1∏∞(1+an) 收敛。特别地,若
∑
n
=
1
∞
a
n
\sum\limits_{n=1}^{\infty}a_n
n=1∑∞an 绝对收敛,则
∏
n
=
1
∞
(
1
+
a
n
)
\prod\limits_{n=1}^{\infty}(1+a_n)
n=1∏∞(1+an) 收敛
证明思路
只需注意到
∣
∏
n
=
k
k
+
p
(
1
+
a
n
)
−
1
∣
≤
∏
n
=
k
k
+
p
(
1
+
∣
a
n
∣
)
−
1
|\prod_{n=k}^{k+p}(1+a_n)-1|\leq \prod_{n=k}^{k+p}(1+|a_n|)-1
∣n=k∏k+p(1+an)−1∣≤n=k∏k+p(1+∣an∣)−1
命题
设数列
{
a
n
}
\{a_n\}
{an} 满足
0
<
a
n
<
1
0<a_n<1
0<an<1,则
∏
n
=
1
∞
(
1
−
a
n
)
\prod\limits_{n=1}^{\infty}(1-a_n)
n=1∏∞(1−an) 收敛当且仅当
∑
n
=
1
∞
a
n
\sum\limits_{n=1}^{\infty}a_n
n=1∑∞an 收敛
证明
充分性显然
必要性:用反证法
(
1
−
a
1
)
⋯
(
1
−
a
n
)
≤
1
(
1
+
a
1
)
⋯
(
1
+
a
n
)
≤
1
1
+
a
1
+
⋯
+
a
n
→
0
\begin{split} (1-a_1)\cdots(1-a_n)&\leq \frac{1}{(1+a_1)\cdots(1+a_n)}\\ &\leq \frac{1}{1+a_1+\cdots+a_n}\to 0 \end{split}
(1−a1)⋯(1−an)≤(1+a1)⋯(1+an)1≤1+a1+⋯+an1→0从而
∏
n
=
1
∞
(
1
−
a
n
)
=
0
\prod_{n=1}^{\infty}(1-a_n)=0
∏n=1∞(1−an)=0 ,矛盾
4. 无穷乘积的绝对收敛
命题:
∏
n
=
1
∞
a
n
\prod\limits_{n=1}^{\infty}a_n
n=1∏∞an 收敛 当且仅当
∑
n
=
1
∞
ln
a
n
\sum\limits_{n=1}^{\infty}\ln{a_n}
n=1∑∞lnan 收敛
证明:
设部分积
P
n
P_n
Pn 和部分和
S
n
S_n
Sn,则注意到
P
n
=
e
S
n
P_n=e^{S_n}
Pn=eSn
推论:若 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1∑∞an 收敛,则 ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1∏∞(1+an) 收敛当且仅当 ∑ n = 1 ∞ a n 2 \sum\limits_{n=1}^{\infty}a_n^2 n=1∑∞an2 收敛
定义:
∑
n
=
1
∞
ln
a
n
\sum\limits_{n=1}^{\infty}\ln{a_n}
n=1∑∞lnan 收敛,则称
∏
n
=
1
∞
a
n
\prod\limits_{n=1}^{\infty}a_n
n=1∏∞an 绝对收敛
定理:
设
a
n
>
−
1
a_n>-1
an>−1,则下列等价
- ∏ n = 1 ∞ ( 1 + a n ) \prod\limits_{n=1}^{\infty}(1+a_n) n=1∏∞(1+an) 绝对收敛
- ∏ n = 1 ∞ ( 1 + ∣ a n ∣ ) \prod\limits_{n=1}^{\infty}(1+|a_n|) n=1∏∞(1+∣an∣) 收敛
- ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^{\infty}|a_n| n=1∑∞∣an∣ 收敛
5. 两个有趣的结论
Wallis公式
π
2
=
2
1
⋅
2
3
⋅
4
3
4
5
⋯
2
n
2
n
−
1
⋅
2
n
2
n
+
1
\frac{\pi}{2}=\frac{2}{1}\cdot \frac{2}{3}\cdot\frac{4}{3}\frac{4}{5}\cdots\frac{2n}{2n-1}\cdot\frac{2n}{2n+1}
2π=12⋅32⋅3454⋯2n−12n⋅2n+12n
证明思路
即证
∏
n
=
1
∞
(
1
−
1
(
2
n
)
2
)
=
2
π
\prod\limits_{n=1}^{\infty}(1-\frac{1}{(2n)^2})=\frac{2}{\pi}
n=1∏∞(1−(2n)21)=π2注意到部分积
P
n
=
∏
k
=
1
n
(
1
−
1
(
2
k
)
2
)
=
[
(
2
n
−
1
)
!
!
]
2
[
(
2
n
)
!
!
]
2
⋅
(
2
n
+
1
)
P_n=\prod\limits_{k=1}^n(1-\frac{1}{(2k)^2})=\frac{[(2n-1)!!]^2}{[(2n)!!]^2}\cdot (2n+1)
Pn=k=1∏n(1−(2k)21)=[(2n)!!]2[(2n−1)!!]2⋅(2n+1)考虑
I
n
=
∫
0
π
2
sin
n
x
d
x
I_{n}=\int_0^{\frac{\pi}{2}}\sin^n{x}\mathrm{d}x
In=∫02πsinnxdx,则
I
2
n
=
(
2
n
−
1
)
!
!
(
2
n
)
!
!
⋅
π
2
,
I
2
n
+
1
=
(
2
n
)
!
!
(
2
n
+
1
)
!
!
I_{2n}=\frac{(2n-1)!!}{(2n)!!}\cdot\frac{\pi}{2},I_{2n+1}=\frac{(2n)!!}{(2n+1)!!}
I2n=(2n)!!(2n−1)!!⋅2π,I2n+1=(2n+1)!!(2n)!!故
π
2
P
n
=
I
2
n
I
2
n
+
1
\frac{\pi}{2}P_n=\frac{I_{2n}}{I_{2n+1}}
2πPn=I2n+1I2n由
I
n
I_n
In 单调递减得
1
<
I
2
n
I
2
n
+
1
<
I
2
n
−
1
I
2
n
+
1
→
1
1<\frac{I_{2n}}{I_{2n+1}}<\frac{I_{2n-1}}{I_{2n+1}}\to 1
1<I2n+1I2n<I2n+1I2n−1→1,这即得到
lim
n
→
∞
P
n
=
2
π
\lim\limits_{n\to\infty}P_n=\frac{2}{\pi}
n→∞limPn=π2
v
i
e
ˋ
t
e
vi\grave{e}te
vieˋte 公式
π
2
=
cos
π
4
⋅
cos
π
8
⋯
cos
π
2
n
\frac{\pi}{2}=\cos{\frac{\pi}{4}}\cdot \cos{\frac{\pi}{8}}\cdots\cos{\frac{\pi}{2^n}}
2π=cos4π⋅cos8π⋯cos2nπ
证明思路
不妨证
∏
n
=
1
∞
cos
x
2
n
=
sin
x
x
\prod\limits_{n=1}^{\infty}\cos{\frac{x}{2^n}}=\frac{\sin{x}}{x}
n=1∏∞cos2nx=xsinx令
x
=
π
2
x=\frac{\pi }{2}
x=2π,即得结论
由倍角公式易归纳地证得
sin
x
=
2
n
(
∏
k
=
1
n
cos
x
2
n
)
⋅
sin
x
2
n
=
2
n
sin
x
2
n
P
n
\sin{x}=2^n(\prod\limits_{k=1}^n\cos{\frac{x}{2^n}})\cdot\sin{\frac{x}{2^n}}=2^n\sin{\frac{x}{2^n}}P_n
sinx=2n(k=1∏ncos2nx)⋅sin2nx=2nsin2nxPn则
lim
n
→
∞
P
n
=
lim
n
→
∞
sin
x
2
n
sin
x
2
n
=
sin
x
x
\lim\limits_{n\to\infty}P_n=\lim\limits_{n\to\infty}\frac{\sin{x}}{2^n\sin{\frac{x}{2^n}}}=\frac{\sin{x}}{x}
n→∞limPn=n→∞lim2nsin2nxsinx=xsinx
参考书:
- 《数学分析》陈纪修 於崇华 金路
- 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
- 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著