【deepseek】safetensor模型权重文件中, fp32, fp16, fp8, ini4分别是怎样的形式

以下是 ​Safertensor 模型权重文件中常见数据格式(fp32/fp16/fp8/int4)的对比表格,包含存储形式、精度、应用场景等核心信息:


数据类型存储形式位宽指数位尾数位数值范围计算精度存储空间节省典型应用场景
FP32单精度浮点数(IEEE 754标准)32-bit823±1.7e38最高-全精度训练/推理
FP16半精度浮点数(IEEE 754标准)16-bit510±65504中等约50%混合精度训练/推理(GPU支持)
FP88位浮点数(多种变体)8-bit4或53或2E4M3: ±448, E5M2: ±57344约75%高性能推理(NVIDIA Hopper等)
INT44位整数(通常以打包形式存储)4-bit--有符号:-8~7
无符号:0~15
极低(需反量化)约87.5%边缘设备/超低比特量化推理

关键说明

  1. FP32

    • 标准浮点格式:全精度计算,适合模型训练和高精度推理。
    • 存储形式:直接存储为32位二进制浮点值。
  2. FP16

    • 混合精度训练:通过降低精度减少显存占用,需结合梯度缩放(Grad Scaling)避免下溢出。
    • 硬件支持:现代GPU(如NVIDIA Tensor Core)原生支持FP16加速。
  3. FP8

    • 变体差异
      • E4M3​(4指数位 + 3尾数位):范围小,适合小数值范围计算。
      • E5M2​(5指数位 + 2尾数位):范围大,精度更低。
    • 硬件依赖:需专用硬件支持(如NVIDIA H100 GPU)。
  4. INT4

    • 量化与打包:通常将多个INT4值压缩到单个字节中(如2个4-bit值存为1个8-bit字节)。
    • 推理优化:需反量化(Dequantization)恢复为FP32/FP16后再计算,牺牲精度换取速度和存储效率。

Safetensors 中的实际存储

  • 文件格式无关性:Safetensors仅定义安全的存储协议,不限制具体数值格式(支持任意dtype)。
  • 混合存储:同一文件中可包含多种精度权重(如部分层用FP16,其他用INT4)。
  • 加载与转换:需框架(PyTorch/TensorFlow等)支持对应数据类型的反序列化。

选择建议

场景推荐格式原因
模型训练FP32/FP16保证数值稳定性
云端GPU推理FP16平衡速度与显存占用
边缘设备部署INT4极致压缩模型体积
新一代GPU推理(H100等)FP8硬件原生支持,吞吐量最大化
### 如何下载ControlNet模型 为了成功下载并配置ControlNet插件及其对应的模型,可以遵循以下方法: #### 下载官方仓库 通过Git命令克隆官方提供的ControlNet版本库到本地环境中是一个有效的起点。这一步骤能够获取所有必需的基础文件结构以及脚本支持[^2]。 ```bash git clone https://huggingface.co/lllyasviel/ControlNet-v1-1 ``` #### 获取预训练权重与检测器模型 访问Hugging Face页面来下载所需的预训练权重和其他辅助工具(如HED边缘检测、Midas深度估计等)。这些资源应当被放置于特定目录下以便后续调用[^1]。 - **SD模型路径**: `ControlNet/models` - **检测器存储位置**: `ControlNet/annotator/ckpts` 对于希望减少内存占用或加速推理过程的情况,可以选择FP16精度的模型变体。这类优化过的版本同样可以在指定链接找到,并且适用于大多数应用场景[^3]。 ```bash wget -P /path/to/ControlNet/models https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/blob/main/*.safetensors ``` #### 安装后的验证操作 完成上述步骤之后,可以通过执行Python脚本来检验安装是否正确无误。此过程中涉及到了两个checkpoint文件之间的转换处理,确保了新加入的ControlNet组件能正常工作[^4]。 ```python import os os.system('python tool_add_control.py ./models/v1-5-pruned.ckpt ./models/control_sd15_ini.ckpt') ``` 以上即为完整的ControlNet模型下载流程说明,在实际应用时可根据个人需求调整具体参数设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值