1. 大模型部署工具 llama.cpp
大模型的研究分为训练和推理两个部分。训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化,推理结果最优化的过程。训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。
llama.cpp(https://github.com/ggerganov/llama.cpp) 主要解决的是推理过程中的性能问题。主要有两点优化:
-
llama.cpp 使用的是 C 语言写的机器学习张量库 ggml
-
llama.cpp 提供了模型量化的工具
计算类 Python 库的优化手段之一就是使用 C 重新实现,这部分的性能提升非常明显。另外一个是量化,量化是通过牺牲模型参数的精度,来换取模型的推理速度。llama.cpp 提供了大模型量化的工具,可以将模型参数从 32 位浮点数转换为 16 位浮点数,甚至是 8、4 位整数。
除此之外,llama.cpp 还提供了服务化组件,可以直接对外提供模型的 API 。
2. 使用 llama.cpp 量化模型
2.1 下载编译 llama.cpp
克隆代码,编译 llama.cpp
git clone https://github.com/ggerganov/llama.cpp``cd llama.cpp``make
在目录下会生成一系列可执行文件:
-
main:使用模型进行推理
-
quantize:量化模型
-
server:提供模型 API 服务
-
…
2.2 准备 llama.cpp 支持的模型
llama.cpp 支持转换的模型格式有 PyTorch 的 .pth
、huggingface 的 .safetensors
、还有之前 llama.cpp 采用的 ggmlv3
。
在 huggingface 上找到合适格式的模型,下载至 llama.cpp 的 models 目录下。
git clone https://huggingface.co/4bit/Llama-2-7b-chat-hf ./models/Llama-2-7b-chat-hf
2.3 转换为 GGUF 格式
- 安装依赖
llama.cpp 项目下带有 requirements.txt 文件,直接安装依赖即可。
pip install -r requirements.txt
- 转换模型
python convert.py ./models/Llama-2-7b-chat-hf --vocabtype spm`` ``params = Params(n_vocab=32000, n_embd=4096, n_mult=5504, n_layer=32, n_ctx=2048, n_ff=11008, n_head=32, n_head_kv=32, f_norm_eps=1e-05, f_rope_freq_base=None, f_rope_scale=None, ftype=None, path_model=PosixPath('models/Llama-2-7b-chat-hf'))``Loading vocab file 'models/Llama-2-7b-chat-hf/tokenizer.model', type 'spm'``...``Wrote models/Llama-2-7b-chat-hf/ggml-model-f16.gguf
vocabtype 指定分词算法,默认值是 spm,如果是 bpe,需要显示指定。
2.4 开始量化模型
quantize 提供各种精度的量化。
./quantize`` ``usage: ./quantize [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]`` ` `--allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit` `--leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing`` ``Allowed quantization types:` `2 or Q4_0 : 3.56G, +0.2166 ppl @ LLaMA-v1-7B` `3 or Q4_1 : 3.90G, +0.1585 ppl @ LLaMA-v1-7B` `8 or Q5_0 : 4.33G, +0.0683 ppl @ LLaMA-v1-7B` `9 or Q5_1 : 4.70G, +0.0349 ppl @ LLaMA-v1-7B` `10 or Q2_K : 2.63G, +0.6717 ppl @ LLaMA-v1-7B` `12 or Q3_K : alias for Q3_K_M` `11 or Q3_K_S : 2.75G, +0.5551 ppl @ LLaMA-v1-7B` `12 or Q3_K_M : 3.07G, +0.2496 ppl @ LLaMA-v1-7B` `13 or Q3_K_L : 3.35G, +0.1764 ppl @ LLaMA-v1-7B` `15 or Q4_K : alias for Q4_K_M` `14 or Q4_K_S : 3.59G, +0.0992 ppl @ LLaMA-v1-7B` `15 or Q4_K_M : 3.80G, +0.0532 ppl @ LLaMA-v1-7B` `17 or Q5_K : alias for Q5_K_M` `16 or Q5_K_S : 4.33G, +0.0400 ppl @ LLaMA-v1-7B` `17 or Q5_K_M : 4.45G, +0.0122 ppl @ LLaMA-v1-7B` `18 or Q6_K : 5.15G, -0.0008 ppl @ LLaMA-v1-7B` `7 or Q8_0 : 6.70G, +0.0004 ppl @ LLaMA-v1-7B` `1 or F16 : 13.00G @ 7B` `0 or F32 : 26.00G @ 7B
执行量化命令
./quantize ./models/Llama-2-7b-chat-hf/ggml-model-f16.gguf ./models/Llama-2-7b-chat-hf/ggml-model-q4_0.gguf Q4_0`` ``llama_model_quantize_internal: model size = 12853.02 MB``llama_model_quantize_internal: quant size = 3647.87 MB``llama_model_quantize_internal: hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
量化之后,模型的大小从 13G 降低到 3.6G,但模型精度从 16 位浮点数降低到 4 位整数。
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
-END-
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。