大模型提示词进阶,零样本提示, 一次样本提示和 少样本提示以及思维链(Chain of Thought, Cot)

技术的核心只有两点,一个是把技术做好,一个是把技术用好

在之前的文章中曾经说过,预训练和微调是为了打造一个更好用的大模型,而提示学习是为了更好的使用大模型,激发大模型的潜能。

而基于提示学习发展起来的提示词工程,也就是怎么写一个更好的提示词;网络上已经有很多经过检验的提示词框架,比如APE,BROKE等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

提示词工程是一门基于经验的科学,因此没有最好的提示词框架,只有不同任务下最合适的提示词框架。

而经过研究发现了提示词更加高级的玩法——样本提示和思维链。

样本提示

样本提示包括Zero-Shot,One-Shot,Few-Shot等多种形式,简单来说就是在提示词中加入一些例子。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

比如 ‍

“whatpu” 是一种生长在坦桑尼亚的小型毛茸茸的动物。使用 whatpu 这个词的一个例子是:  
我们在非洲旅行,看到了这些非常可爱的 whatpu。  --举例  
“farduddle” 的意思是快速跳跃。使用 farduddle 这个词的一个例子是:

这就是一个少样本提示的例子,上部分是例子,浅绿色部分就是大模型的回答。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

根据不同的大模型和任务类型,可以适当的给出一个到多个例子,而我们平常直接问大模型的问题属于零样本提示,也就是不给出案例,直接让大模型回答。‍‍‍‍‍‍

因此样本提示就类似于我们人类平常讨论问题,可能对方对你的问题不是很了解,这时我们下意识的反应就是,我给你举个例子。‍‍‍‍‍‍‍‍‍‍‍

这就是样本提示的作用,在使用样本提示的过程中,可以适当的增加多个样本,Few-Shot中的few就是大于等于1的意思。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

以下就是一个给出三个例子的少样本提示:‍‍‍‍‍‍

思维链

思维链是为了解决复杂问题而推出的一种方式,就是在提示词中加入思考过程。


举例如下:‍

这个是没用思维链的方式‍‍‍‍‍‍‍‍‍‍‍‍‍

问:小明有三个苹果,他的妈妈又给他买了两个苹果,小明吃掉了一个,小明还剩几个苹果?

答:4个‍‍‍

这个是使用思维链的方式‍‍‍

问:小明有三个苹果,他的妈妈又给他买了两个苹果,小明吃掉了一个,还剩几个苹果?‍‍‍‍

答:小明起初有三个苹果,他的妈妈又买了两个,之后又吃掉一个,因此3 + 2 - 1 = 4,所以小明有四个苹果。‍‍‍‍‍‍‍‍‍

问:小丽有三个网球,她又购买了两罐网球,每罐三个,这时小丽有几个网球?


在某些大模型中,如果不使用思维链的方式,关于小丽的问题,可能就会回答错误,而使用了思维链可以提升大模型回答的准确率,当然也不能完全避免回答错误的情况。‍‍‍‍‍‍‍

这里只是举个简单的例子,如果我们在执行更加复杂的任务时,使用思维链可以大大提升大模型的输出质量。特别是在Agent中,Agent利用思维链来优化大模型的推理规划能力和过程,这样就可以让Agent完成更加复杂的任务。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

样本提示与思维链结合‍‍

样本提示和思维链是两种不同的优化大模型表现能力的方式,一个是给出案例,一个是逐步拆解,但它们的最终目的都是为了更好的使用大模型。‍‍

因此,在实际的应用过程中处理复杂任务时,一般会把样本提示与思维链两者相结合,即给出案例,又给出思考过程。‍‍‍‍

如下图所示:

‍‍‍‍‍‍

在一些问答系统中,使用样本提示+思维链的方式能够更好的回答问题,以及做一些复杂任务的拆解。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而如果把样本提示+思维链的方式,再使用大模型的function call的方式来实现Agent,就可以让大模型完成一些更加复杂的任务,比如使用思维链做完规划之后,调用工具来完成每一步的任务。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

通过这样的方式,就可以把大模型与具体的垂直领域相结合,创建垂直领域的智能体。‍‍‍

基于大模型技术构建的人工智能机器人,感兴趣的可以点击查看:‍‍‍‍

大模型技术的核心只有两点,一是怎么把模型做的更好,更强大;二是怎么用好大模型,让大模型解决具体领域的问题。‍‍‍‍

思维链和样本学习是解决两种不同问题而提出的技术,而且可以把两者结合起来,使得模型表现的更好。‍‍‍‍‍‍‍‍‍‍‍‍‍‍

零基础如何学习大模型 AI

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。

AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。


这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

CSDN独家福利

最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值