一、实验名称:
二、实验目的:
有限差分法绘制带电长圆柱体的电位和电力线图像。
三、实验原理及步骤:
1.基本原理
在很多实际情况下,往往我们不知道电荷的分布情况,而只知道边界的电位。
例如在静电场中的导体,边界是等位面,但是表面上的电荷分布往往不一样,而且很难求得。
如果我们想求导体附近的电场,可以使用用差分法解电场的方法。
解决这个问题的关键是对电位使用以下结论:在一个没有电荷的区域,给出一个点的电位等于周围点的电位数值的平均值。使用高斯定律以及以下公式来证明这个结论:
(根据电压V的电场分量)
将集中讨论该情况,其中电位只取决于两个坐标,x和y。一个例子是一个带电的长圆柱体。在一个点的电势只依赖于这一点在平面垂直于圆柱体的轴线,而不是z坐标。对于这样一个二维的情况下,考虑一个点P的坐标(x,Y,Z),并在一个由高斯表面封闭的立方体的一面长度是2Δl,中心在P(图)。如果立方体的内部没有电荷,通过立方体的电通量ΦE等于零。由方程 可知Z轴的电场分量为零,因为电势V并不是z的函数。因此,并没有通过高斯表面的平行于xy -平面的电通量。由于是一个小的立方体,通过其他四个面每通量有一个良好的逼近,等于在每面的中心和每一面的(2Δl)2的E的垂直分量的乘积 。总流量(等于0)可以表示为;
在一个没有电荷的区域,点P的电位数值等于P点周围电位值的平均值。
图4 没有电荷的区域,点P的电位的求解示意图
使用式,可以近似的写出电场的各分量:
()
可以得到P点的位是:
总之,P点的电位值等于P点周围点的电位值的平均值,前提是l非常小。
2.计算机绘图算法
3.参考程序
计算场点电压值程序如下:
m=12
for k=1:m
for j=1:m
if k==1
V(j,k)=1;
elseif((j==1)|(j==m)|(k==m))
V(j,k)=0;
else
V(j,k)=1;
end
end
end
cha=0.01;delta=0;
n=0;
while(1)
n=n+1;
for k=2:m-1
for j=2:m-1
Vnew(j,k)=1/4*(V(j+1,k)+V(j-1,k)+V(j,k+1)+V(j,k-1));
d=abs((Vnew(j,k)-V(j,k))/V(j,k));
if d>delta
delta=d;
end
V(j,k)=Vnew(j,k);
end
end
if delta<cha
break;
end
if(n>100)
break;
end
delta=0.;
end
代入m=22
绘图程序:
k=1:m;j=1:m;
[DX,DY] = gradient(V,.4,.4);
hold on
quiver(k,j,DX,DY,2)
hold off
k=1:m;
j=1:m;
[DX,DY]=gradient(V,.4,.4)
A=(DX.^2+DY.^2).^0.3;
[DA,DB]=gradient(A,.4,.4);
hold on
quiver(k,j,DA,DB,2)
hold off
3.程序参考运行结果
电场图和电力线图分别如图、图所示。
四、实验时间
2024年12月9日
五、实验仪器:
1、计算机 1台
2、MATLAB 仿真软件 1套
六、实验结果:
代码
m=22
for k=1:m
for j=1:m
if k==1
V(j,k)=1;
elseif((j==1)|(j==m)|(k==m))
V(j,k)=0;
else
V(j,k)=1;
end
end
end
cha=0.01;
delta=0;
n=0;
while(1)
n=n+1;
for k=2:m-1
for j=2:m-1
Vnew(j,k)=1/4*(V(j+1,k)+V(j-1,k)+V(j,k+1)+V(j,k-1));
d=abs((Vnew(j,k)-V(j,k))/V(j,k));
if d>delta
delta=d;
end
V(j,k)=Vnew(j,k);
end
end
if delta<cha
break;
end
if(n>100)
break;
end
delta=0.;
end
k=1:m;
j=1:m;
[DX,DY] = gradient(V,.4,.4);
hold on
quiver(k,j,DX,DY,2)
hold off
k=1:m;
j=1:m;
[DX,DY]=gradient(V,.4,.4)
figure(1)
A=(DX.^2+DY.^2).^0.3;
[DA,DB]=gradient(A,.4,.4);
figure(2)
hold on
quiver(k,j,DA,DB,2)
hold off
图3 电场线的图像 图4 电力线的图像