Google Earth Engine精度评价方法

今天讲讲如何在GEE中做最后的精度评价。主要是因为在和许多读者或通过交流群,或通过私聊沟通过程中,发现很多人还不是很理解在GEE中分类后精度评价的问题。
在进行评价之前,需要明晰在GEE中精度评价分为哪几种情况。我们这里说的是两种情况。

第一种,构建好了分类模型后,将分类模型应用于验证样本集,然后计算混淆矩阵;

第二种,没有分类模型,只有分类结果图,那么应该是将分类结果图应用于样本集,最后计算混淆矩阵。

对于第一种情况,由于官方给出了有关代码,所以大家都比较好理解,也正是这么做的,具体参见下图。(参见代码:https://code.earthengine.google.com/e145a3f0e88cc272c6541f4514bb3093)

图片

对于第二种情况,则有很多人不理解,或者还没有完全掌握。举个例子,下面有一张水体分类图和验证样本,需要计算水体精度,该如何做呢?其实也是可以做的,最后的结果见下图:

图片

### Google Earth Engine 中 CLCD 数据的使用方法 在中国范围内,CLCD (China Land Cover Data) 是一种高精度的土地覆盖分类数据集。通过Google Earth Engine (GEE),用户能够便捷地访问和操作这些数据,从而支持各种环境监测与城市规划的研究工作。 #### 访问CLCD数据的方法 为了加载CLCD数据到项目中,可以通过如下Python代码片段来实现: ```python import ee ee.Initialize() # 加载中国土地覆盖数据集合 clcd_dataset = ee.ImageCollection('COPERNICUS/Landcover/100m/Proba-V-C3/Global') # 过滤得到特定年份的数据 filtered_clcd = clcd_dataset.filter(ee.Filter.date('2019-01-01', '2019-12-31')) # 获取指定地区的影像剪裁 study_area = ee.Geometry.Polygon( [[[116.4, 39.8], [116.7, 39.8], [116.7, 40.0], [116.4, 40.0]]]) clipped_image = filtered_clcd.first().clip(study_area) print(clcd_dataset.getInfo()) ``` 这段脚本展示了如何初始化GEE库、选择所需的时间范围以及定义感兴趣区域,并最终打印出所选数据的信息[^1]。 #### 使用CLCD进行不透水面分类 当涉及到具体的不透水面识别任务时,除了传统的机器学习算法外,还可以考虑采用深度学习技术来进行更精确的特征提取。由于GEE本身并不直接提供完整的深度学习框架集成,但是允许上传自定义模型文件或借助TensorFlow.js等工具间接实施此类高级分析过程。 对于想要进一步提高分类效果的情况,建议探索融合多源遥感数据的可能性,比如结合哨兵系列卫星提供的光学与雷达观测结果,以此增强对不同表面材质的理解力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值