💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于1DCNN及其注意力机制改进的滚动轴承故障诊断研究
一、1DCNN的基础结构与原理
1DCNN是一种专门处理一维时序信号的卷积神经网络,其核心结构包括输入层、卷积层、池化层和全连接层(图9)。卷积层通过一维卷积核在时间轴上滑动提取局部特征,池化层(如最大池化或平均池化)降低特征维度并保留关键信息,全连接层整合特征完成分类任务。相较于传统方法,1DCNN能自动提取振动信号中的故障特征,避免人工特征提取的局限性。例如,在凯斯西储大学轴承数据集中,1DCNN的原始准确率可达97.5%。
技术优势:
- 实时性与低成本:仅需线性乘加运算,适合硬件部署。
- 平移不变性:对大卷积核的兼容性使其能捕捉长序列中的全局特征。
- 数据增强策略:通过窗口切片和重叠采样,数据集容量可扩展30倍。
二、注意力机制改进模型的核心创新
1. ECA-1DCNN:高效通道注意力机制
ECA模块通过局部跨通道交互(1D卷积)生成通道权重,避免降维操作,参数仅需80个。其核心公式为:
Mc(F)=Sigmoid(Conv1D(GAP(F)))
其中,GAP为全局平均池化,卷积核大小k通过通道数C自适应确定(如k=2)。实验表明,ECA-1DCNN在滚动轴承诊断中准确率达99.22%,且抗噪性能显著。
性能表现:
- 在加噪数据(SNR=0 dB)下,准确率仍保持92%以上。
- 与DFT结合(DFT-ECANet),频域特征增强后准确率提升至99.8%。
2. CBAM-1DCNN:通道与空间注意力结合
CBAM模块分两步:
- 通道注意力:结合全局平均池化和最大池化,通过共享MLP生成权重。
- 空间注意力:沿通道轴聚合特征,通过卷积生成空间权重。
公式为:
F′=Mc(F)⊗F;F′′=Ms(F′)⊗F
实验显示,CBAM-1DCNN准确率达99.53%,且收敛速度提升30%。
应用案例:
- 在TensorFlow框架中,结合双池化层替代全连接层,测试集准确率99%。
- 噪声环境下(高斯白噪声),鲁棒性优于传统SVM和随机森林模型。
3. GAM-1DCNN:全局跨维度交互
GAM通过3D排列和MLP保留通道-空间信息,避免信息弥散。其结构为:
F2=Mc(F1)⊗F1;F3=Ms(F2)⊗F2
通道子模块使用两层MLP,空间子模块采用卷积融合特征。实验显示,GAM-1DCNN在滚动轴承诊断中准确率高达100%,且参数量仅增加1.2%。
对比优势:
- 在CIFAR-100和ImageNet-1K数据集中,GAM超越CBAM和SENet。
- T-SNE可视化显示,GAM能更好分离不同故障类别的特征。
三、滚动轴承故障诊断数据集与评价体系
-
常用数据集:
- 凯斯西储大学(CWRU)数据集:包含内圈、外圈、滚动体故障及正常状态,采样频率12 kHz,负载0-2,206 W。
- MFPT数据集:涵盖真实工业场景下的轴承故障,含不同噪声和负载工况。
-
评价指标:
- 准确率:主流模型可达95%-100%。
- 鲁棒性:在30-40 dB噪声下,ECA-1DCNN和GAM-1DCNN准确率下降小于5%。
- 收敛速度:CBAM-1DCNN训练迭代次数减少至975次,优于传统1DCNN的2700次。
四、性能对比与适用场景分析
模型 | 准确率 | 参数量 | 抗噪性 | 适用场景 |
---|---|---|---|---|
1DCNN | 97.5% | 低 | 中等 | 低噪声、实时诊断 |
ECA-1DCNN | 99.22% | 极低 | 高 | 资源受限环境 |
CBAM-1DCNN | 99.53% | 中等 | 高 | 复杂噪声、多负载工况 |
GAM-1DCNN | 100% | 较高 | 极高 | 高精度要求的离线分析 |
结论:
- ECA-1DCNN适合边缘设备部署,平衡性能与计算成本。
- CBAM-1DCNN在变工况和噪声干扰下表现稳健,适合工业现场。
- GAM-1DCNN在实验室环境中可实现极致精度,但需更高算力支持。
五、未来研究方向
- 多模态融合:结合声发射、温度等多传感器数据提升诊断可靠性。
- 轻量化设计:探索注意力机制的量化与蒸馏技术,降低计算开销。
- 迁移学习:跨设备、跨工况的模型泛化能力优化。
- 实时诊断系统:嵌入FPGA或边缘计算设备,实现毫秒级响应。
通过上述改进,1DCNN及其注意力机制变体有望在工业4.0中成为滚动轴承故障诊断的核心技术。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Python代码、数据、文章
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取