【PCA的原理】

PCA(主成分分析)的主要目标是:

将特征维度变小,‌同时尽量减少信息损失。‌它通过对一个样本矩阵进行特征变换,‌找出一组新的特征来重新表示数据,‌同时减少特征的数目,‌新特征的数目远小于原特征的数目。‌通过PCA,‌可以将n维原始特征映射到k维(‌k<n)‌上,‌称这k维特征为主成分。‌重要的是,‌这并不是简单地从n维特征中去除其余n-k维特征,‌而是重新构造出全新的k维正交特征,‌且新生成的k维数据尽可能多地包含原来n维数据的信息。‌

PCA的降维过程可以理解为旋转坐标系,‌取前k个轴作为新特征。‌

降维的代数意义是通过矩阵乘法运算,‌即原始样本与投影矩阵做矩阵乘法运算,‌得到低维矩阵。‌

PCA通过寻找数据中的最大方差方向,‌即投影方差最大,‌来确定新的维度。‌这个过程涉及到对实对称方阵进行正交对角化,‌分解为特征向量和特征值,‌其中不同特征值对应的特征向量之间线性无关。‌特征值表示对应特征向量的重要程度,‌特征值越大,‌代表包含的信息量越多。‌

综上所述,‌PCA是一种有效的数据分析方法,‌它通过找到数据中的最大方差方向,‌将原始数据投影到这些方向上,‌从而实现数据的降维和特征提取。

主成分分析(PCA)是一种常用的数据降维技术,它可以通过提取数据中最重要的特征来减少数据集的维数,同时尽可能保留原始数据的信息。以下是PCA的基本原理和步骤:

PCA的原理

PCA(‌主成分分析)‌的原理是:

通过线性变换将原始数据变换为一组各维度线性无关的表示,‌用于提取数据的主要特征分量,‌常用于高维数据的降维。‌

    1. 方差最大化:
      PCA的目标是找到数据中方差(数据分布的广度)最大的方向,然后将数据投影到这些方向上。这些方向称为主成分,它们是数据协方差矩阵的特征向量。第一个主成分是数据方差最大的方向,第二个主成分是与第一个主成分正交(垂直)且具有次大方差的方向,依此类推。
    1. 协方差矩阵:
      在计算主成分之前,通常先将数据标准化(即减去均值并除以标准差),以避免不同量级的特征影响结果。然后,计算数据的协方差矩阵。协方差矩阵反映了数据各特征之间的相关性。
    1. 特征值分解:
      计算协方差矩阵的特征值和特征向量。特征值表示各主成分的方差贡献大小,特征向量则定义了主成分的方向。
    1. 选择主成分:
      根据特征值的大小,选择最重要的几个特征向量作为主成分。这些特征向量定义了新的空间,数据将被投影到这个新空间中,从而实现降维。

PCA的步骤

    1. 数据预处理:中心化数据(每个特征减去其均值)。
    1. 构建协方差矩阵:计算数据的协方差矩阵。
    1. 计算特征值和特征向量:对协方差矩阵进行特征值分解。
    1. 排序特征向量:按照特征值的大小排序特征向量,特征值越大,对应的特征向量在数据中的重要性越高。
    1. 选择主成分:根据需要降维到的维数,选择相应数量的最大特征值对应的特征向量。
    1. 数据转换:使用选定的特征向量将原始数据转换到新的特征空间中。

通过以上步骤,PCA可以有效地从高维数据中提取最重要的特征,并在尽量少丢失信息的前提下,简化数据的结构。这使得PCA特别适用于数据可视化、噪声数据过滤、特征提取等场景。

  • 10
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值