下图为对凯斯西储大学轴承数据集外圈故障时域信号使用ResNet模型与Grad-CAM方法进行显著性分析的归因解释所得的热力图。由于外圈故障信号存在明显的时域冲击信号,也即时间序列信号中存在明显的与故障相关的显著性特征,因此,此种类型的信号尤其适用于显著性方法的归因解释。从图中可以看出,神经网络对外圈故障信号样本的激活程度权重颜色更热的部分集中在时域信号的冲击附近,说明网络的关注点在信号的冲击成分,网络也通过此冲击成分分类出外圈故障,这与人类专家关于轴承外圈故障特征的认知相符合,进一步阐述了显著性分析方法对模型分析可以得到正确的归因解释。
学术咨询:
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。
一维神经网络的特征可视化分析-以心电信号为例(Python,Jupyter Notebook)
包括Occlusion sensitivity方法,Saliency map方法,Grad-CAM方法
完整代码可通过学术咨询获得。
基于深度学习的机械故障诊断及其权重可视化(Python)
MATLAB环境下基于CNN的轴承故障诊断及特征可视化
算法程序运行环境为MATLAB R2021B,使用 CNN 进行滚动轴承故障诊断,原始数据来自西储大学轴承数据中心,包含3种故障工况(内圈故障,外圈故障和滚动体故障)和1种正常工况。
医学图像的深度学习可解释性(MATLAB R2021B)