首先利用Matlab生成仿真信号并通过2层卷积神经网络模型进行分析,仿真不添加高斯白噪声,
外圈故障仿真信号
内圈故障仿真信号
卷积层1的类激活图如下:
外圈故障类激活图
内圈故障类激活图
卷积层2的类激活图如下:
外圈故障类激活图
内圈故障类激活图
对比卷积层1和卷积层2的特征可视化结果可以发现,在对时域信号进行一维卷积的过程中,随着卷积深度的增加,所提取的特征信息也越来越丰富与全面,逐渐地集中在冲击区域附近。
因此,主要分析卷积层2即最后一层的可视化结果,黄色区域表示卷积层对该位置进行了较多的特征提取,激活程度较大,均集中在冲击区域,并且激活程度较大的区域与外圈故障的特征频率一致,也呈现出周期性,如红色框线所示,间隔等于外圈通过周期 19.52ms。
内圈故障仿真信号的结果中,冲击区域的激活程度较大,包括黄色、绿色和浅蓝色的区域,这些激活程度较大的部分具有周期性,能够表现出内圈故障的特征频率,如红色框线所示,间隔与内圈通过周期相同,为 12.7ms,而且激活程度的强弱与冲击区域振幅的大小在总体上呈现为正相关,因此激活程度也表现出了幅值调制现象,如图中红色波形所示。这与滚动轴承内圈故障的特点是一致的,所以卷积神经网络能够将内外圈故障信号进行分类。
以上对两种故障的类激活图分析表明,卷积过程对于输入的内外圈故障信号的激活位置集中在冲击区域附近,轴承在这些位置包含较多的故障特征,更重要的是,该表征可视化方法能够与机理相结合,以故障的频率特征为角度,对诊断过程的解释提供一种手段。因此,改进的梯度权重类激活映射方法不仅能够用于图像,在无噪声的情况下对一维时间信号仍适用,并且对卷积提取的过程具有充分的解释性意义。
考虑到在实际工程中响应会受到噪声干扰,故在仿真分析中,分别添加 5dB、0dB 和-5dB 的高斯白噪声,观察其 1D-Grad-CAM++图并分析结果,如下图所示。
其中从上至下分别是信噪比为5dB、0dB、-5dB 条件下的类激活图,左右分别对应滚动轴承外圈故障和内圈故障。
当有噪声的情况下,输入信号经过卷积神经网络后,特征的激活区域仍集中在内外圈故障信号的冲击区域附近,即网络对该部分有较高的激活权重。当信噪比为 5dB 和 0dB 时,在外圈故障信号类激活图中,较大激活程度的黄色和绿色区域表现出周期性,与外圈故障的特征频率基本一致,说明网络能够很好地识别出外圈故障;在内圈故障信号类激活图中,较大激活程度的区域也较明显地表现出内圈故障的特征频率,并且振幅较大的冲击区域激活程度大于振幅较小的冲击区域激活程度,这表明激活程度也具有一定的幅值调制特性,说明网络能够识别内圈故障,但通过对比发现,随着信噪比的降低,为 0dB 时,幅值较小的冲击成分逐渐被噪声淹没,故障特征的提取结果明显不如信噪比为 5dB 时的结果,导致模型的诊断准确率有所下降。当信噪比为-5dB 时,内外圈故障信号的可视化结果已较难表现出各自的频率特征,内圈故障信号激活程度的幅值调制现象也受到较大影响,模型的特征提取能力变差,诊断准确率大幅下降。
学术咨询:
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。
非均匀采样数据的时频表示-稀疏提升算法(MATLAB R2018A)
短时傅里叶变换STFT的同步压缩变换(一阶,二阶)与基于小波变换的同步压缩变换(一阶,二阶)时频谱对比(MATLAB)
基于期望最大化的非平稳多分量信号瞬时频率和幅值估计(MATLAB)