如何融合数值机理模型与基于数据驱动的深度学习模型

融合基于自然物理系统机理的数值机理模型与基于数据驱动的深度学习模型以构建混合模型是一种有效的物理引导深度学习框架。混合模型的构建有多种方法,如模型集成及构建残差模型等。

1)模型集成:将数值机理模型与深度学习进行结构或过程的集成,是发挥两种模型优势的重要方法。措施包括为深度学习模型引入数值机理模型数据流以进行特征增强;实施模型级联或替代等。

如有学者使用深度学习方法研究翼形气动问题,尝试使用特征增强方法将简化数值机理模型的物理信息导入深度学习模型以构造集成模型,使用翼形数据驱动深度学习网络以回归升力系数,在第三隐藏层增加了气流物理参数(雷诺数与功角)、数值机理模型(Hess-Smith 面板法)产出的升力系数及压力阻力系数,所提混合模型取得了很好的效果。特别地,由于Hess-Smith 面板法在小功角条件下表现出较好的预测效果,混合模型成功地继承了数值机理模型的优点;

有学者开发了用于预测刀具磨损的物理引导混合模型,以自适应神经模糊系统基础,以加工条件参数和传感器数据为输入特征,融合刀具磨损率预测数值机理模型构建混合模型,其对于磨损的预测精度得到了较大提升;

有学者在GCNN中引入物理模型的刚度退化信息与导波信号的功率谱密度变化关系进行学习,以确保模型输出满足现有物理,通过仅对一种特定碳纤维增强复合材料结构的数据进行训练,混合模型就可以将其出色的性能扩展到NASA 发布的CFRP数据集中的所有其他CFRP 层上;

有学者通过整合作物生长和生产模型、非饱和流模型等数值模型与径向基函数神经网络构建了集成模型以进行生态水文建模。在有限硬件条件下的测试中集成模型降低了约6%的运行时间,增强了运行效率。在多个数据集上,集成模型与数值模拟的结果高度一致,显示出良好的泛化性能。

模型集成方法有效地结合了基于物理的模型和基于数据驱动的深度学习模型的优势。通过利用两者的互补特性,不仅提升了模型的性能,还减轻了各自的不足。通过结合数值机理模型的物理准确性和深度学习的数据处理能力,该方法改善了物理过程的建模,提供了比单一模型更高的预测精度,并确保模型输出在物理上的一致性。集成模型还能有效利用数值机理模型的低成本数据与深度学习的快速计算能力,提升模型的运行速度。然而,在集成基于物理的模型和深度学习模型之前,需考虑到基于物理的模型的可用性和准确性。由于物理过程的复杂性可能随应用场景而变化,基于物理的模型需要在细节上进行适当校准,而未经校准的模型可能会引入物理信息的误差。因此,使用经过校准的模型进行集成能更好地捕获与目标系统相关的关键物理特征,从而提高整体模型的实用性和准确性。

2)残差建模:残差建模是构建混合模型的一种重要方法。在面对未知的物理机理和观测误差时,基于领域物理知识的数值机理模型在实际应用中难以完全准确地描述现实物理系统,因此其输出结果会存在不可避免的误差。然而,深度学习模型具有复杂函数逼近的能力,可以对数值模型的误差进行回归。基于这一原理,可以构建残差建模框架来弥补模型误差。

有学者针对数值天气预报模型在降水预测任务中存在的系统偏差问题,利用空间信息和大气环流变量作为辅助预测因子,使用CNN对数值模型的残差进行建模,通过其对空间信息的提取能力,有效改进了数值机理模型在预测任务中的RMSE;

有学者采用CFD和深度学习模型交替计算时间序列并监测第一原理残差的混合方法,两者的交叉点可以由第一原理的物理信息确定。通过进行中间CFD 模拟,始终如一地防止深度学习模型预测的时间序列中的残差超过公差,网络参数可以在最新的CFD 时间序列数据中使用类似的变量拓扑更新,包括参数更新时间在内,混合模型的仿真速度得到了较大提升。

这些研究表明残差建模是直接解决基于物理的模型的缺陷的有效方法。当数值机理模型无法捕捉所有复杂非线性关系时,深度学习模型能通过学习这些差异来提供更精确的预测结果。残差模型通过校正数值机理模型的系统误差,不仅提升了特定数据集上的表现,还增强了对新或未见数据的适应能力。尽管深度学习模型容易受到过拟合的影响,但在残差建模中,其主要关注预测物理模型的残差,这种专注性降低了过拟合的可能性,并提高了模型的稳定性和可靠性。

与完全基于数据驱动的模型相比,残差模型通常需要较少的计算资源,因为物理模型提供了一个近似解决方案,深度学习模型只需调整这些解决方案以适应特定的误差模式。这种方法增强了模型在不同环境中的应用灵活性和鲁棒性,为处理复杂的实际问题提供了一种有效的技术路线。

然而,在使用深度学习模型进行残差建模时需谨慎。例如在某些情况下,动态系统可能需要保持稳定或状态需为非负。如果没有对残差模型施加额外的约束,深度学习模型的过度灵活性可能导致不良行为。此外,这种方法旨在模拟由物理模型产生的误差,而不是直接预测某些物理量,无法强制执行基于物理系统内部状态的更广泛约束,不能提供与已知物理定律绝对一致的预测。该方法仍然需要大量的训练数据,因此无法解决数据稀缺性的挑战。

总之,物理引导的混合模型方法通过整合基于物理的模型和深度学习模型,充分利用两者的优势,增强模型的物理意义和实用性。研究者可通过利用数值机理模型的结构性和深度学习的灵活性,改进各领域对物理知识或自然物理系统机理的应用。尽管如此,混合模型的发展仍面临诸多挑战,包括提高模型可解释性、保证决策透明度及实现绝对物理一致性等。面对这些挑战,可尝试在构建深度学习残差模型的过程中利用物理引导方法融入物理信息。

学术咨询:

担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。

基于LSTM的滚动轴承剩余使用寿命预测(FEMTO-ST数据集,Python,iypnb文件)

from math import sqrt
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score


# 使用sklearn计算 MSE 、 RMSE、 MAE、r2
#test_answer = np.array(test_answer)
# generate dataset
# predicted expect and calculate confidence interval
#predicted_test = np.mean(test_answer, 0)
#my_true_test = yScaler.inverse_transform(yTest)
print("mean_absolute_error:", mean_absolute_error(yTrue[(timeStep+1):], predicted_expect))
print("mean_squared_error:", mean_squared_error(yTrue[(timeStep+1):], predicted_expect))
print("rmse:", sqrt(mean_squared_error(yTrue[(timeStep+1):], predicted_expect)))
print("r2 score:", r2_score(yTrue[(timeStep+1):], predicted_expect))

mean_absolute_error: 0.1584930792342556

mean_squared_error: 0.0365404064887125

rmse: 0.19115545110907117

r2 score: 0.5566075250325875

完整代码可通过学术咨询获得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值