泰勒级数就是用多项式函数去逼近光滑函数,泰勒公式(泰勒级数)非常基础,也非常有用,只要涉及近似处理,应想到泰勒级数展开(泰勒公式)。
泰勒级数的发现与插值法的研究是紧密相联的,17世纪,人们关心如何在两个数之间精确插值。通常的做法是确定出有限个函数值,然后通过插值的算法,计算出其余点函数的值。目前国内外对泰勒级数的理论基础研究已经非常成熟。 除了作为理论工具以外,泰勒级数的引入可以大大降低问 题的复杂程度,在实际的工程实践中进行数值计算,以服务并指导生产实践。
(1)泰勒级数在废水中微生物生长规律的研究中的应用
(2)泰勒级数在工程项目经济评价中的应用
(3)泰勒级数法在工程项目风险分析中的应用
(4)泰勒级数在水声定位工程中的应用
(5)泰勒级数在新型神经网络集中的应用
(6)泰勒级数在震源定位中的应用
(7)基于泰勒级数的空间机器人时延神经网络控制
(8)泰勒级数在滤波器设计中的应用
(9)泰勒级数在鲁棒语音识别中的应用
(10)泰勒级数在电气系统暂态稳定计算中的应用
(11)基于泰勒级数估计的油井数据无损压缩方法
学术咨询:
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。
信号的时域、频域和时频域特征提取(Python)