钻削刀具磨损状态的时频谱图分析

不同磨损阶段的力学原始时域信号与通过复Morlet小波基函数进行CWT变换后得到的小波尺度谱对应关系如下图所示。时域图像横轴为时间,纵轴为轴向力大小,小波尺度谱横轴为时间,纵轴为频率,颜色表示不同频率和时间下的能量分布情况。

随着后刀面拐角处磨损程度的增加,钻削轴向力逐渐增大.由不同磨损状态下的小波尺度谱和时域波形图可知,初期磨损阶段轴向力峰值处于200~280N,中期磨损阶段轴向力峰值处于290~350N,严重磨损阶段轴向力激增至450N以上。轴向力峰值与刀具磨损程度成正相关。力学信号频率分量多集中在500Hz频段,随着刀具磨损程度的增加,低频区域分量占比逐渐增加。

温度信号的原始时域信号与CWT变换后的小波尺度谱对应关系如图下图所示。

随着刀具磨损程度的增加,刀具与工件接触时的摩擦增大,热量在刀具周围积聚,使温度逐渐升高。初期磨损阶段,钻削CFRP时温度处于75~120℃,钻削TC4时温度处于140~220 ℃。

中期磨损和严重磨损阶段时,钻削CFRP时的温度呈轻微上升趋势,而钻削TC4层却存在明显差异,分别处于180~260 ℃和240~420 ℃.温度信号结尾处存在阶跃部分是因为在钻头钻出时红外传感器测量的是钛合金出口处的钻头表面温度,该温度略高于钻削过程中材料侧面的发散温度。对应的小波尺度谱中钻头钻出阶段能量分布占比明显上升。钻头空程阶段,大量的切削热被切屑带走,钻头表面温度已恢复至50℃以下,削弱了拆刀测量这一过程对刀具热力耦合场的影响。

力和温度信号的小波尺度谱表明,不同时间段内对应的频率范围及信号能量强度存在明显区别,表明使用神经网络对小波尺度谱分类具有可行性。

学术咨询:

担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。

基于连续小波变换的谐波伪影去除-以(从一维信号中剪切宽峰,Python)

压缩包=数据+代码+参考文献

import matplotlib.pyplot as plt
from matplotlib import gridspec


import numpy as np
import scipy.ndimage
import scipy.signal


import colorednoise


import wavelet
import utils

完整代码可通过学术咨询获得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值