知乎学术咨询(哥廷根数学学派):
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。
与常规小波变换不同,双树复小波变换由两个平行且独立的低通和高通滤波器构成作为实部树和虚部树,对在操作过程中数据之间没有交互和干扰,保留了复小波变换的诸多优良特性。信号在分解时实数部和虚数部之间存在一个采样值间隔的延时,因此双数复小波变换在其分解过程中取得的数据行形成互补关系,减少了信息的丢失,在一定程度上抑制了频率混叠。同时因双树复小波具有完全重构性,能对机械振动信号进行完美分解重构,作为一种故障特征提取手段为机械故障类型识别提供了良好的特征。
鉴于此,采用基于双树复小波和邻域多尺度对非平稳信号进行降噪,结果如下:
完整数据和代码可通过知乎学术咨询获得(哥廷根数学学派):