多传感器融合下旋转机械故障诊断方法对比:PLS-SVM与SVR

PLS-SVM与SVR的区别对比(以旋转机械故障诊断为例)

对比维度偏最小二乘支持向量机(PLS-SVM)支持向量机回归(SVR)旋转机械故障诊断中的典型应用场景
核心原理结合偏最小二乘(PLS)降维与SVM分类/回归,通过提取潜在变量(Latent Variables)降低数据维度。直接使用支持向量机进行回归,依赖核函数映射高维空间解决非线性问题。- PLS-SVM:处理多传感器(振动、温度、噪声)的高维数据。
- SVR:基于单一振动信号的故障程度回归。
输入特征处理自动提取与目标变量最相关的潜在特征,消除多重共线性。需手动选择或构建关键特征(如时频域指标),依赖领域知识。- PLS-SVM:自动融合振动频谱的100个频点特征。
- SVR:需人工选取振动信号的峰值频率和RMS值。
数据维度适应性专为高维小样本设计(如传感器数 > 样本数),适合多源异构数据。适合中低维数据(特征数 < 样本数),对特征冗余敏感。- PLS-SVM:处理10个传感器×100维特征的数据(样本50组)。
- SVR:处理3个关键特征×500样本的数据。
计算复杂度需计算协方差矩阵和迭代提取潜在变量,计算量较大。仅依赖核函数计算支持向量,计算效率较高(尤其对低维数据)。- PLS-SVM:多传感器在线监测系统需GPU加速。
- SVR:嵌入式设备实时预测轴承剩余寿命。
模型解释性潜在变量可关联物理意义(如“主振动模态”对应轴承不平衡故障)。依赖核函数的黑箱特性,解释性较差(如无法明确哪些频率影响预测结果)。- PLS-SVM:工程师可通过潜在变量分析故障根源。
- SVR:输出RUL但无法解释关键依据。
噪声鲁棒性通过PLS降维抑制无关噪声(如传感器漂移),适合工业现场数据。对特征中的异常值敏感,需额外去噪预处理(如小波阈值滤波)。- PLS-SVM:直接处理含10%噪声的原始数据。
- SVR:需先对振动信号去噪再提取特征。
适用任务分类与回归均可,尤其擅长多目标预测(如同时诊断故障类型和严重程度)。主要用于回归任务(如剩余寿命预测),分类需改用SVC(支持向量分类)。- PLS-SVM:同时输出“齿轮磨损类型+剩余寿命”。
- SVR:仅预测“剩余寿命”单一指标。
工业部署成本需存储潜在变量投影矩阵,内存占用较高,适合云端或工控机部署。模型轻量(仅存储支持向量),适合边缘设备(如PLC、嵌入式系统)。- PLS-SVM:用于中央监控系统分析全厂设备。
- SVR:部署在风机本地控制器实时预警。

建议

条件推荐方法理由
数据维度高(特征数 > 样本数)PLS-SVM降维避免过拟合,提升多传感器融合效果。
特征明确且维度低SVR计算高效,适合实时性要求高的边缘计算场景。
需多目标输出PLS-SVM支持联合预测故障类型与程度,避免多次建模。
强解释性需求PLS-SVM潜在变量关联物理机制,符合工业诊断的透明度要求。

知乎学术付费咨询(哥廷根数学学派):

担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值