水果店果篮最小成本问题 | 动态规划

问题描述

小C开了一家水果店,某天接到了一个大订单,要求将n个编号为1到n的水果打包成多个果篮,每个果篮的最大容量为m个水果,并且果篮中水果的编号必须连续。每个果篮的成本与容纳的水果数量及水果的体积相关,成本公式为:

k×⌊(u+v)/2⌋+sk×⌊(u+v)/2⌋+s

其中,uu是果篮中水果的最大体积,vv是果篮中水果的最小体积,kk是果篮中水果的数量,ss是一个常数,⌊x⌋⌊x⌋ 表示对xx进行下取整。

你的任务是帮助小C将这些水果打包成若干果篮,使得总成本最小。

例如:当有6个水果,体积为[1, 4, 5, 1, 4, 1],一个果篮最多装4个水果,常数ss为3时,最优的打包方案是将前三个水果(1, 4, 5)装成一个果篮,后三个水果(1, 4, 1)装成另一个果篮,最小的总成本为21。


测试样例

样例1:

输入:n = 6, m = 4, s = 3, a = [1, 4, 5, 1, 4, 1]
输出:21

样例2:

输入:n = 5, m = 3, s = 2, a = [2, 3, 1, 4, 6]
输出:17

样例3:

输入:n = 7, m = 4, s = 5, a = [3, 6, 2, 7, 1, 4, 5]
输出:35

题解:

        一开始想用DFS之类的暴力方法,因为你能做的操作是固定的,放一个,两个,三个,到m个进果篮,但是这样一定会超时,直接否定。

        所以应该是使用动态规划,选定了是一维DP,发现当你在选择第X位水果时,当m=4,你可以与前4个水果组成果篮,3个,2个,或者是自己单独一个果篮,这时,动态规划就成了。

        动态规划:DP[i]代表前i个水果成本最小值。

        状态转移:

DP[i]=min((DP[i-m+1]+col(i-m+1,i)),(DP[i-m+2]+col(i-m+2,i))...)

        其中col计算了从x到y的果篮成本。 

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<iomanip>
#include<queue>
#include<stack>
#include<vector>
#include<unordered_set>
#include<unordered_map>
#include<map>
#include<set>
using namespace std;
typedef long long int ll;

int col(int x,int y,vector<int> a,int s){
    int maxnum=0,minnum=100000;
    for(int i=x;i<=y;i++){
        if(a[i-1]>maxnum){
            maxnum=a[i-1];
        }
        if(a[i-1]<minnum){
            minnum=a[i-1];
        }
    }
    return (y-x+1)*((minnum+maxnum)/2)+s;
}

int pro(int x,int y,vector<int> dp,vector<int> a,int s,int m){
    int t1=col(x,y,a,s)+dp[x-1];
    int t2=dp[y];
    //cout << "x: " << x << " y: " << y << " t1: " << t1 << " t2: " << t2 << "\n";
    return min(t1,t2);
}

int solution(int n, int m, int s, vector<int> a) {
    vector<int> dp(n+2,0);
    for(int i=1;i<=n;i++){
        dp[i]=dp[i-1]+a[i-1]+s;
        if(i<=m){
            for(int j=1;j<i;j++){
                dp[i]=pro(j,i,dp,a,s,m);
            }
        }
        else{
            for(int j=i-m+1;j<i;j++){
                dp[i]=pro(j,i,dp,a,s,m);
            }
        }
        /*
        for(int j=0;j<=n;j++){
            cout << dp[j] << " ";
        }
        cout << "\n";
        */
    }
    //cout << dp[n] << "\n";
    return dp[n];
}

int main() {
    cout << (solution(6, 4, 3, {1, 4, 5, 1, 4, 1}) == 21) << endl;
    cout << (solution(5, 3, 2, {2, 3, 1, 4, 6}) == 17) << endl;
    cout << (solution(7, 4, 5, {3, 6, 2, 7, 1, 4, 5}) == 35) << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值