台庆 | 高频绕线式陶瓷芯片电感

台庆 | 高频绕线式陶瓷芯片电感


SWIU-SERIES

台庆科所研发生产绕线式陶瓷芯片电感SWIU-SERIES,透过自动化绕线技术,提供高精密度、高Q值,高自我共振频率等特点,广泛应用于消费型电子产品RF讯号匹配,WIFI讯号匹配,如PC、TV、交换机、路由器、USB DONGLE等。
透过新材料研发技术,亦可提供适用于汽车产业严峻的使用温度范围(-40 度-~ 125度 ),并通过车用等级AEC-Q200检验规范。

 


 




为了应用于汽车电子高强度的震动及推力测试,台庆科透过自主研发的材料,加上产品特有的封胶方式,更是将本体的强度 & 上板后PCB推力提升17%以上,提供产品更好的保护力。
 

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格符合要求(Excel格)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值