时间序列预测 | Catboost时间序列预测建模,单步、多步(Python)

19 篇文章 4 订阅 ¥19.90 ¥99.00

Catboost回归

(1)参数解读

无论是回归还是分类,CatBoost的大部分参数都是通用的,但任务的不同性质意味着一些参数可能只在一个任务中有意义。

以下是一些关键参数的简要概述:

(a)通用参数:

learning_rate: 学习率,决定了模型每一步的步长。常用的值为0.01, 0.03, 0.1等。

iterations: 树的数量。

depth: 树的深度。

l2_leaf_reg: L2正则化项的系数。

cat_features: 分类特征的列索引列表。

loss_function: 损失函数。对于分类,常见的是Logloss(二分类)或MultiClass(多分类)。对于回归,常见的是RMSE。

border_count: 用于数值特征的分箱数量。较高的值可能会导致过拟合,较低的值可能会导致欠拟合。

verbose: 显示的训练日志的详细程度。

(b)专用于分类的参数:

classes_count: 在多分类任务中,类别的数量。

class_weights: 各类的权重,用于不平衡分类任务。

auto_class_weights: 用于处理类不平衡的自动权重计算方法。

(c)专用于回归的参数:

scale_pos_weight: 用于不平衡的回归任务。

(d)异同点:

相同点: 大部分参数(如learning_rate, depth, l2_leaf_reg等)在回归和分类任务中都是相同的,并且它们的含义和效果也是一

  • 12
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
LSTM(Long Short-Term Memory)是一种适用于时间序列预测的神经网络模型,其具有记忆功能,可以利用长序列信息来进行预测。在进行时间序列的预测时,我们通常会面临两个难点:数据处理和模型搭建。 针对单步预测的LSTM时间序列预测,我们首先需要进行数据处理。一种常用的方法是使用滑动窗口来处理数据。滑动窗口是指将时间序列数据切割成多个固定大小的窗口,每个窗口包含一定数量的历史数据及其对应的目标值。通过这种方式,我们可以将时间序列数据转化为监督学习问题,使得模型能够根据过去的观测值来预测未来的值。具体而言,我们可以将每个窗口的历史数据作为输入,目标值作为输出,从而建立监督学习模型。 接下来是模型的搭建。对于单步预测的LSTM模型,我们可以将一个LSTM层连接到一个全连接层。LSTM层用于学习时间序列的长期依赖关系,而全连接层用于将LSTM层的输出映射到预测的目标值。在模型的参数设定方面,我们可以根据具体问题的需求和原始数据的情况来进行调整,以获得更好的预测效果。 综上所述,单步预测的LSTM时间序列预测包括数据处理和模型搭建两个主要步骤。数据处理阶段中,我们可以使用滑动窗口方法将时间序列数据转化为监督学习问题。模型搭建阶段中,我们可以将一个LSTM层和一个全连接层相连接,以构建一个能够学习时间序列长期依赖关系的神经网络模型。这样的模型可以用于预测未来的单步时间序列数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值