% 导入数据集
load(‘temperature_data.mat’); % 假设温度数据保存在temperature_data.mat文件中
% 数据预处理
% 这里省略了数据预处理的步骤,包括数据归一化、特征提取等
% 划分训练集和测试集
train_ratio = 0.8; % 训练集占总数据的比例
train_size = round(train_ratio * size(data, 1));
train_data = data(1:train_size, 😃;
test_data = data(train_size+1:end, 😃;
% 构建温度预测模型
model = create_temperature_prediction_model(); % 自定义创建温度预测模型的函数
% 训练模型
num_epochs = 100; % 训练轮数
batch_size = 32; % 批大小
train_model(model, train_data, num_epochs, batch_size);
% 进行温度预测
predicted_temperature = predict_temperature(model, test_data);
% 显示结果
plot_results(test_data, predicted_temperature);
% 自定义函数实现部分
function model = create_temperature_prediction_model()
% 创建并配置温度预测模型
% 这里省略了模型的具体实现,包括CNN、LSTM和多头注意力机制等
% 返回模型
model = …; % 返回创建好的模型
end
function train_model(model, train_data, num_epochs, batch_size)
% 训练模型
% 这里省略了模型训练的具体步骤,包括数据分批、模型优化器的选择、损失函数的定义等
% 返回训练好的模型
trained_model = …; % 返回训练好的模型
end
function predicted_temperature = predict_temperature(model, test_data)
% 使用模型进行温度预测
% 这里省略了温度预测的具体步骤
% 返回预测结果
predicted_temperature = …; % 返回预测结果
end
function plot_results(test_data, predicted_temperature)
% 绘制实际温度和预测结果的图形
% 这里省略了绘图的具体步骤
% 显示图形
end