【SCI顶级优化】Matlab实现雾凇优化算法RIME-CNN-LSTM-Multihead-Attention实现温度预测

% 导入数据集
load(‘temperature_data.mat’); % 假设温度数据保存在temperature_data.mat文件中

% 数据预处理
% 这里省略了数据预处理的步骤,包括数据归一化、特征提取等

% 划分训练集和测试集
train_ratio = 0.8; % 训练集占总数据的比例
train_size = round(train_ratio * size(data, 1));
train_data = data(1:train_size, 😃;
test_data = data(train_size+1:end, 😃;

% 构建温度预测模型
model = create_temperature_prediction_model(); % 自定义创建温度预测模型的函数

% 训练模型
num_epochs = 100; % 训练轮数
batch_size = 32; % 批大小
train_model(model, train_data, num_epochs, batch_size);

% 进行温度预测
predicted_temperature = predict_temperature(model, test_data);

% 显示结果
plot_results(test_data, predicted_temperature);

% 自定义函数实现部分

function model = create_temperature_prediction_model()
% 创建并配置温度预测模型
% 这里省略了模型的具体实现,包括CNN、LSTM和多头注意力机制等

% 返回模型
model = …; % 返回创建好的模型
end

function train_model(model, train_data, num_epochs, batch_size)
% 训练模型
% 这里省略了模型训练的具体步骤,包括数据分批、模型优化器的选择、损失函数的定义等

% 返回训练好的模型
trained_model = …; % 返回训练好的模型
end

function predicted_temperature = predict_temperature(model, test_data)
% 使用模型进行温度预测
% 这里省略了温度预测的具体步骤

% 返回预测结果
predicted_temperature = …; % 返回预测结果
end

function plot_results(test_data, predicted_temperature)
% 绘制实际温度和预测结果的图形
% 这里省略了绘图的具体步骤

% 显示图形
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值