【独家首发】Matlab实现天鹰优化算法AO优化Transformer-LSTM实现负荷数据回归预测

% 导入数据集
load(‘load_data.mat’); % 假设负荷数据保存在load_data.mat文件中

% 数据预处理
% 这里省略了数据预处理的步骤,包括数据归一化、特征提取等

% 构建Transformer-BiLSTM模型
model = create_transformer_bilstm_model(); % 自定义创建Transformer-BiLSTM模型的函数

% 定义目标函数
fitness_function = @(x) evaluate_model_performance(x, model, input_data, target_data);

% 定义牛顿拉夫逊优化算法参数
options = optimoptions(‘fminunc’, ‘Algorithm’, ‘trust-region’, ‘Display’, ‘iter’, ‘MaxIterations’, 100);

% 运行牛顿拉夫逊优化算法
[optimized_params, fval] = fminunc(fitness_function, initial_params, options);

% 使用优化后的参数更新模型
updated_model = update_model_with_params(model, optimized_params);

% 进行负荷数据回归预测
predicted_data = predict_load_data(updated_model, input_data);

% 显示结果
plot_results(target_data, predicted_data);

% 自定义函数实现部分

function model = create_transformer_bilstm_model()
% 创建并配置Transformer-BiLSTM模型
% 这里省略了模型的具体实现,包括输入层、Transformer编码器、BiLSTM解码器等

% 返回模型
model = …; % 返回创建好的模型
end

function fitness = evaluate_model_performance(params, model, input_data, target_data)
% 根据参数优化模型,并评估其性能
% 这里省略了模型优化和性能评估的具体步骤

% 返回模型性能指标(适应度值)
fitness = …; % 返回模型性能指标
end

function updated_model = update_model_with_params(model, params)
% 使用优化后的参数更新模型
% 这里省略了模型参数更新的具体步骤

% 返回更新后的模型
updated_model = …; % 返回更新后的模型
end

function predicted_data = predict_load_data(model, input_data)
% 使用模型进行负荷数据预测
% 这里省略了负荷数据预测的具体步骤

% 返回预测结果
predicted_data = …; % 返回预测结果
end

function plot_results(target_data, predicted_data)
% 绘制实际负荷数据和预测结果的图形
% 这里省略了绘图的具体步骤

% 显示图形
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值