% 假设您有回归数据 reg_data 和相应的标签 reg_labels
% 1. 数据预处理
% 在这一步中,您需要对回归数据进行适当的处理,例如归一化、序列化等操作
% 2. 划分数据集为训练集和测试集
% 这里假设您将数据划分为 train_data, train_labels, test_data, test_labels
% 3. 定义Transformer模型
% 这里假设您有一个简单的Transformer模型
transformerModel = transformerModelFunction();
% 4. 定义GRU模型
% 这里假设您有一个简单的GRU模型
gruModel = gruModelFunction();
% 5. 实现阿基米德优化算法(AOA)
% 这里需要编写阿基米德优化算法的代码,用于优化Transformer和GRU模型的超参数
% 6. 优化Transformer模型和GRU模型
% 使用阿基米德优化算法来优化Transformer和GRU模型的超参数
% 7. 训练Transformer模型
% 这里假设您有一个简单的训练过程
transformerModel = trainTransformerModel(train_data, train_labels);
% 8. 训练GRU模型
% 这里假设您有一个简单的训练过程
gruModel = trainGRUModel(train_data, train_labels);
% 9. 预测
% 使用训练好的Transformer和GRU模型对测试数据进行回归预测
predicted_values_transformer = predict(transformerModel, test_data);
predicted_values_gru = predict(gruModel, test_data);
% 10. 组合预测结果
% 可以根据需要将Transformer和GRU模型的预测结果进行组合
% 11. 评估模型性能
% 计算预测结果与真实标签之间的误差或其他性能指标来评估模型的表现