基于支持向量机的面部表情分类预测(Matlab实现)
面部表情是人类重要的非语言交流方式之一,可以传达情感、意图和心理状态。在计算机视觉领域,面部表情分类是一个重要的任务,它可以应用于情感识别、用户体验评估、人机交互等多个领域。本文将介绍如何使用支持向量机(Support Vector Machine,SVM)算法来实现面部表情的分类预测,并提供相应的Matlab源代码。
一、数据集准备
首先,我们需要一个包含面部表情的数据集。常用的面部表情数据集有CK+、FER2013等,这些数据集包含了多种不同的表情类别。在本文中,我们以CK+数据集为例进行讲解。
CK+数据集包含了多个人的面部表情图像,每个图像都标注了对应的表情类别。我们需要将数据集划分为训练集和测试集,通常采用70%的数据作为训练集,30%的数据作为测试集。
二、特征提取
在使用支持向量机进行分类之前,我们需要从面部图像中提取特征。常用的特征提取方法包括使用人工设计的特征(如LBP、HOG等)和使用深度学习模型提取的特征(如VGG、ResNet等)。
这里我们以LBP(Local Binary Patterns)为例进行特征提取。LBP是一种用来描述图像纹理特征的方法,它可以将每个像素点与相邻像素点进行比较,生成二进制编码。通过统计图像中不同二进制编码的