下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容。栏目后续章节的文章将深入概括R语言在临床研究和新药创新领域的应用,填补了国内R教材中尚未广泛覆盖的部分内容。2章5节:认识和安装R的扩展包,什么是模糊搜索安装,工作目录和空间的区别与设置(更新20240807 )-CSDN博客文章浏览阅读425次。R语言以其强大的功能和灵活的扩展性,成为了无数数据分析师和研究者的首选工具。R的丰富功能和海量扩展包直接相关,但如何高效管理这些扩展包,进而充分发挥R的强大潜力?本文将为您揭示这些问题的答案。https://blog.csdn.net/2301_79425796/article/details/140585920?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22140585920%22%2C%22source%22%3A%222301_79425796%22%7D
欢迎订阅我们专栏
.......前面部分请点击上面链接看原文(原文5171字)
5、从GitHub上直接安装
GitHub是一个面向开源及私有软件项目的托管平台,许多R的扩展包都托管在GitHub上,因此我们需要从GitHub下载这些包。首先,您需要从CRAN下载并安装 devtools
扩展包,然后使用 library()
函数加载它,并通过 install_github()
函数安装所需的扩展包。您可以一次安装一个或多个扩展包。例如,要从GitHub安装 RCIT
扩展包,您可以使用以下代码:
library(devtools)
install_github("Diviyan-Kalainathan/RCIT")
在这个例子中,Diviyan-Kalainathan
是发布仓库的名称,而 RCIT
是扩展包的名称。因此,在从GitHub安装R扩展包时,除了记住扩展包的名称外,还需要记住扩展包所在的仓库名称。
6、如何用githubinstall
模糊搜索安装
如果大家只知道扩展包的名字但无法确定其具体来源,您这个时候需要githubinstall
扩展包了。githubinstall
是一个用于从 GitHub 上安装 R 扩展包的工具,它简化了从 GitHub 安装包的过程,尤其是当您不知道包的确切名称或其所在的仓库时。
接着首先安装githubinstall扩展包。
install.packages("githubinstall")
然后,大家可以使用 githubinstall
扩展包中的 githubinstall()
函数来实现模糊搜索。即使您记不清扩展包的名字,这个函数也会返回相关的搜索结果。例如,如果您只记得扩展包的名字包含“match”,githubinstall()
将返回相关的扩展包,如 rmatch
、fmatch
、pmatch
和 march
。以下是使用 githubinstall()
函数的示例:
library("githubinstall")
githubinstall("match")
上图,在运行以上代码后,系统会显示类似以下的提示。根据提示,您可以选择要安装的扩展包。例如,如果 mailund/pmatch
是您想要的包,输入 3
选择该包,然后在提示是否安装时输入 y
以进行安装。
# 查看所有已安装的R包
installed_packages <- installed.packages()
head(installed_packages) # 查看前几行数据
# 查看特定包的详细信息(例如ggplot2)
packageDescription("ggplot2")
# 查看所有已加载的包及其版本
sessionInfo()
# 查看R会话中所有已加载的包(不包括未加载的包)
search()
# 查看包的帮助文档(例如dplyr)
help(package = "dplyr")
# 查看包的vignette文档(例如tidyverse)
vignette(package = "tidyverse")
# 查找已安装的包的路径(例如dplyr)
find.package("dplyr")
4、同时下载多个扩展包
如果您需要同时下载多个扩展包,可以使用 c()
函数来将包名组合在一起。例如,要同时下载 ggpubr
、MASS
和 Matching
扩展包,可以使用以下代码:
install.packages(c("ggpubr", "MASS", "Matching"))
如果在RStudio界面安装或使用 install.packages()
函数时遇到“Error in install.packages: 读取链接时发生了错误”的信息,这通常是由于网络问题引起的。您可以尝试在RStudio的“Tools”选项卡中选择“Global Options”,点击“Packages”选项后,再点击“Change…”选择一个国内镜像站点来解决此问题,如下图。
~~~~~~~~~~
在这里,你学到的并非仅仅是 R 的某一个技巧,而是能够从零开始,深入且系统地学习 R 语言。此外,本专栏每周至少定期更新三篇文章,每篇文章篇幅均在 5000 字以上。而且,对于已经发表的知识点,我们也会根据新的技术或理解及时进行更新,这是纸质版图书无法做到的。为了让更多的忠实粉丝和同学们享受到实惠,本专栏采用折扣定价策略。随着章节的不断完成,折扣力度会逐渐减小。所以,现在正是订阅的最佳时机!
https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482
第一章:认识数据科学和R
1章1节:数据科学的发展历程,何 R 备受青睐及我们专栏的独特之处(更新20240822)-CSDN博客
1章2节:关于人工智能、机器学习、统计学连和机器学习、R 与 ChatGPT 的探究 (更新20240814)-CSDN博客
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客
第二章:R的安装和数据读取
2章1节:R和RStudio的下载和安装(Windows 和 Mac)_rst语言选择哪个镜像-CSDN博客
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20240823)_rstudio如何使用-CSDN博客
2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客
2章5节:认识和安装R的扩展包,什么是模糊搜索安装,工作目录和空间的区别与设置(更新20240807 )-CSDN博客
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(更新20240807 )_r语言 复制数据集-CSDN博客
2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客
2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客
2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客
2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客
第三章:认识数据
3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
第四章:数据的预处理
4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
第五章:定量数据的统计描述
5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
第六章:定性数据的统计描述
6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
第七章:R的传统绘图
7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客
7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
第八章:R的进阶绘图
8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客
8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客
8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客
8章5节:用R绘制平行坐标图-CSDN博客
8章8节:绘制自定义的高质量动态图和交互式动态图-CSDN博客
第九章:临床试验的统计
9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客