今天给同学们分享一篇双疾病+机器学习+实验的生信文章“Screening of immune-related secretory proteins linking chronic kidney disease with calcific aortic valve disease based on comprehensive bioinformatics analysis and machine learning”,这篇文章于2023年1月1日发表在J Transl Med期刊上,影响因子为8.44。
慢性肾脏疾病(CKD)是最重要的心血管风险因素之一,在钙化主动脉瓣病(CAVD)等各种心血管疾病的发病机制中起着重要作用。作者的目标是探索与CKD相关的基因,可能涉及CAVD的发病机制,并发现CKD合并CAVD的诊断候选生物标志物。
1. 数据处理
生物信息学分析策略如图1所示进行。从GEO数据库中收集了钙化和对照主动脉瓣样本的三个原始数据集,并在进行批次效应去除后进行了合并。批次校正后,得到了整合的CAVD数据集,并进行了归一化处理,其中CAVD组包括34个钙化样本,对照组包括23个对照样本。如图2A和B所示,在批次效应去除后,三个数据集之间的差异显著减少。
图1 本研究设计的流程图
图2 CAVD数据集的整合和整合CAVD数据集的差异表达分析
2. 钙化主动脉瓣病中不同表达基因的鉴定
综合钙化和对照主动脉瓣样本之间的差异分析显示,共有173个差异表达基因(DEGs),其截断标准为调整后的p值≤0.05且|log2(折叠变化)|≥1,其中包含119个上调基因和54个下调基因。通过火山图和热图来描述综合CAVD数据集中DEGs的表达模式(图2C和D)。
3. CAVD中加权基因共表达网络的构建和关键模块的识别
为了进一步探索CAVD中的关键基因,作者进行了加权基因共表达网络分析(WGCNA),以确定钙化主动脉瓣样本中最相关的基因模块。根据尺度独立性和平均连接性,选择了软阈值为5(图3A)。使用该阈值生成了14个模块,并在图3B中呈现了模块的聚类树状图。模块特征基因的聚类显示在图3C中。此外,本研究还探讨了C