毕业设计:基于深度学习的旅游景点情感分析语料库系统

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 情感分类算法

2.2 词嵌入模型

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯旅游景点情感分析语料库系统

设计思路

一、课题背景与意义

        随着旅游业的蓬勃发展,了解旅游者对于不同景点的情感和意见成为了重要的市场分析和决策依据。传统的市场调研方法往往耗时耗力且成本高昂,因此开发一个旅游景点情感分析语料库系统具有重要的实用价值和研究意义。该系统可以通过分析用户在社交媒体、旅游网站和评论平台上的评论和评分,自动识别和提取出旅游者对于不同景点的情感和意见。利用该语料库,旅游从业者和决策者可以更加准确地了解用户需求和偏好,优化景点的管理和推广策略,提升旅游体验和满意度。

二、算法理论原理

2.1 情感分类算法

        朴素贝叶斯算法是基于贝叶斯定理和特征条件独立假设的简单而高效的分类算法。它适用于高维度特征和大规模数据集,并且对于离散特征和文本数据的处理效果较好。朴素贝叶斯算法具有以下优势:简单易懂,容易实现和理解;对小样本数据表现较好;具备较好的可扩展性和高效性;适用于多分类问题和实时预测;训练速度快,适用于较大规模数据集。因此,在处理具有离散特征和文本数据的分类问题时,朴素贝叶斯算法是一种常用且有效的选择。

毕业设计:基于深度学习的旅游景点情感分析语料库系统

        卷积神经网络(CNN)是一种深度学习模型,主要用于处理具有网格结构的数据,如图像和文本。它通过卷积层、池化层和全连接层等组件,自动提取和学习特征,实现高效的特征表示和分类。卷积神经网络的特点包括层级结构、权值共享和局部感知。卷积层和池化层的引入使网络能够自动提取局部特征,并通过层层叠加形成全局特征。卷积神经网络在图像和文本领域取得了巨大成功。它通过学习多层抽象特征来捕捉数据的局部关系和空间结构,具有出色的特征表示能力。此外,卷积神经网络还具有良好的鲁棒性和泛化能力,对噪声和变形有一定的容忍度。

        朴素贝叶斯算法适用于小样本和高维度特征,具有简单和高效的特点;而卷积神经网络适用于图像和文本处理,能够自动学习特征表示和提取。朴素贝叶斯算法在处理文本数据和离散特征时表现较好,而卷积神经网络在图像和文本分类等任务中有很大的优势。选择哪种算法要根据具体问题的特点和数据集的属性来进行判断和选择。

2.2 词嵌入模型

        嵌入模型是一种将离散的词语映射到连续向量空间中的技术,如Word2Vec和GloVe。Word2Vec通过预测上下文来学习词向量,捕捉语义相似的词语的相近向量位置。GloVe则通过对全局词语共现矩阵进行因式分解,得到词语之间的共现关系。嵌入模型能够将词语表示为连续的低维向量,捕捉语义和关联关系,并在自然语言处理任务中用于计算相似度、推荐和分类。优势在于捕捉语义关系,良好的泛化能力和训练效果,适用于大规模语料库训练。

毕业设计:基于深度学习的旅游景点情感分析语料库系统

        主题挖掘算法是用于从文本数据中发现主题结构的技术,其中Latent Dirichlet Allocation(LDA)是常见的主题模型算法。LDA假设文档由多个主题组成,每个主题由一组词语构成。通过对文档中的词语分布进行建模,LDA可以推断主题的分布以及每个文档中的主题分布。主题挖掘算法能够建模和发现文本数据中的隐含主题结构,帮助理解主题关键词、主题组成和文档之间的主题分布。它还可应用于文本聚类、主题推荐等任务。主题挖掘算法的优势在于能够从大规模文本数据中挖掘主题结构,揭示隐藏信息,并在文本分类、主题推荐和信息检索等任务中发挥作用。此外,主题挖掘算法具有较好的可扩展性,可处理大规模数据集。

毕业设计:基于深度学习的旅游景点情感分析语料库系统

        嵌入模型(如Word2Vec、GloVe、BERT)和主题挖掘算法(如LDA)是用于处理文本数据的两种不同技术。嵌入模型通过将词语映射到连续向量空间中捕捉语义关系,具有良好的泛化能力,适用于词语表示和语义理解。主题挖掘算法则用于发现文本数据中的主题结构,帮助理解主题组成和分布,适用于主题分析和文本聚合。 

三、检测的实现

3.1 数据集

        由于网络上没有现有的合适的数据集,我决定自己收集并制作一个全新的数据集。首先,我收集了大量旅游者在社交媒体和评论平台上对于不同景点的评论数据。这些评论涵盖了各种情感倾向和意见,包括正面评价、负面评价以及中性评论。然后,我对这些评论进行了清洗、去噪和预处理,以确保数据的质量和一致性。通过这些步骤,我得到了一个真实、多样化且适用于旅游景点情感分析的数据集。

3.2 实验环境搭建

        为搭建实验环境,需要一台性能良好的计算机作为硬件基础,并确保具备足够的处理能力和存储空间。在软件方面,需要选择适合任务的操作系统,安装Python环境,并选择合适的编辑器或IDE。根据任务需求,安装必要的数据处理和分析工具,深度学习框架以及其他相关库和工具。在配置实验环境之前,要明确任务需求并选择合适的硬件和软件配置。

3.3 实验及结果分析

        情感得分计算和评估是情感分析的重要组成部分。系统可以使用不同的方法来计算评论的情感得分,例如基于词典的情感得分计算或者基于统计算法(如SO-PMI)等。这些方法可以将情感信息量化为数值,帮助理解评论的情感倾向。评估情感分析模型的性能是必要的。常用的评估指标包括准确率、召回率、F1值等。这些指标可以衡量模型在情感分类任务中的预测准确度和性能表现。

# 计算评论的情感得分
def calculate_sentiment_score(text):
    tokens = word_tokenize(text.lower())
    sentiment_score = 0
    for token in tokens:
        if token in sentiment_dict:
            sentiment_score += sentiment_dict[token]
    return sentiment_score

comment1 = "This movie is excellent! I really enjoyed it."
comment2 = "The service was terrible and the food was bad."

# 计算评论的情感得分
score1 = calculate_sentiment_score(comment1)
score2 = calculate_sentiment_score(comment2)

print("Comment 1 sentiment score:", score1)
print("Comment 2 sentiment score:", score2)

# 模拟的情感分类标签
labels = [1, -1]

# 模拟的模型预测结果
predictions = [1, -1]

# 计算评估指标
accuracy = nltk.metrics.accuracy(labels, predictions)
precision = nltk.metrics.precision(labels, predictions)
recall = nltk.metrics.recall(labels, predictions)
f1_score = nltk.metrics.f_measure(labels, predictions)

        可视化技术在情感分析中的应用可以帮助用户更好地理解和解释情感分析的结果。通过图表、词云、热力图等可视化方式,情感分析的结果可以以直观的形式展示出来。此外,还可以利用情感趋势图、情感地图、情感网络图等更高级的可视化技术来观察情感变化趋势、地域性差异以及情感之间的关系。通过这些可视化技术,用户可以更深入地洞察情感信息,为决策和行动提供更有力的支持。

import matplotlib.pyplot as plt
import pandas as pd

dates = ['2022-01-01', '2022-02-01', '2022-03-01', '2022-04-01']
positive_scores = [0.6, 0.8, 0.7, 0.5]
negative_scores = [0.4, 0.2, 0.3, 0.5]

# 创建数据帧
df = pd.DataFrame({'Date': dates, 'Positive Score': positive_scores, 'Negative Score': negative_scores})
df['Date'] = pd.to_datetime(df['Date'])

# 绘制情感趋势图
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Positive Score'], label='Positive Score')
plt.plot(df['Date'], df['Negative Score'], label='Negative Score')
plt.xlabel('Date')
plt.ylabel('Sentiment Score')
plt.title('Sentiment Trend Over Time')
plt.legend()
plt.show()

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 21
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值