个人学习笔记4:动手学深度学习pytorch版-李沐

#深度学习# #人工智能# #神经网络# 

深度学习计算部分: PyTorch 神经网络基础

5.1 层和块

块(block)可以描述单个层、由多个层组成的组
件或整个模型本身。使用块进行抽象的一个好处是可以将一些块组合成更大的组件,这一过程通常是递归的,通过定义代码来按需生成任意复杂度的块,我们可以通过简洁的代码实现复杂的神经网络。

多个层被组合成块,形成更大的模型:

从编程的角度来看,块由类(class)表示。它的任何子类都必须定义一个将其输入转换为输出的前向传播函数,并且必须存储任何必需的参数。注意,有些块不需要任何参数。最后,为了计算梯度,块必须具有反向传播函数。在定义我们自己的块时,由于自动微分提供了一些后端实现,因此只需要考虑前向传播函数和必需的参数。

回顾mlp:

import torch
from torch import nn
from torch.nn import functional as F

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))#nn.Sequential是定义了一种特殊的module

X = torch.rand(2, 20)#2x20的矩阵,2批量大小,20输入维度
net(X)

结果输出:

通过实例化nn.Sequential来构建我们的模型,层的执行顺序是作为参数传递的。nn.Sequential定义了一种特殊的Module,即在PyTorch中表示一个块的类,它维护了一个由Module组成的有序列表。注意,两个全连接层都是Linear类的实例,Linear类本身就是Module的子类。另外,到目前为止,一直在通过net(X)调用我们的模型来获得模型的输出。这实际上是net.__call__(X)的简写。这个前向传播函数非常简单:它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。(纯复制原文,太清晰了)

5.1.1 自定义块

下面的MLP类继承了表示块的类。我们的实现只需要提供我们自己的构造函数(Python中
的__init__函数)和前向传播函数。

class MLP(nn.Module):#定义mlp是nn.module的子类
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层#定义的全连接层,把它存在一个类的变量成员里面
        self.out = nn.Linear(256, 10)  # 输出层#定义的全连接层,把它存在一个类的变量成员里面

    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

在这个MLP实现中,两个层都是实例变量。首先,我们定制的__init__函数通过super().__init__() 调用父类的__init__函数,省去了重复编写模版代码。然后,我们实例化两个全连接层,分别为self.hidden和self.out。

net = MLP()#实例化mlp类
net(X)

输出:

5.1.2 顺序块

构建我们自己的简化的MySequential,我们只需要定义两个关键函数:
1. 一种将块逐个追加到列表中的函数;
2. 一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。
下面的MySequential类提供了与默认Sequential类相同的功能。

#参数解释:*args: *args 是一个特殊的参数,用于接收任意数量的位置参数,并将它们作为一个元组传递给函数。在函数定义时,可以使用 *args 来接收多个不定长的位置参数,然后对它们进行处理。在调用函数时,可以使用 * 运算符将一个可迭代对象解包成多个单独的参数,然后将它们传递给函数。*args表示的是一个任意长度的元组,即预先并不知道,函数调用时会传递多少个参数。
class MySequential(nn.Module):
    def __init__(self, *args):#*args表示接受list of input argument
        super().__init__()
        for block in args:
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict
            self._modules[block] = block#将传入的linear放入self._modules
    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

使用我们的MySequential类重新实现多层感知机:

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

结果输出:

并不是所有的架构都是简单的顺序架构。当需要更强的灵活性时,我们需要定义自己的块。有时我们可能希望合并既不是上一层的结果也不是可更新参数的项,我们称之为常数参数(constant parameter)。例如,我们需要一个计算函数 $f(\mathbf{x},\mathbf{w}) = c \cdot \mathbf{w}^\top \mathbf{x}$的层,其中x是输入,w是参数,c是某个在优化过程中没有更新的指定常量。

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)#生成随机权重,不计算梯度
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        X = F.relu(torch.mm(X, self.rand_weight) + 1)#将x和rand_weight做乘法,加偏移1,再作用激活函数
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:#当绝对值求和大于1时
            X /= 2
        return X.sum()#返回求和的标量

net = FixedHiddenMLP()#实例化类
net(X)


#注意它运行了一个while循环,在L1范数大于1的条件下,将输出向量除以2,直到它满足条件为止。最后,模型返回了X中所有项的和。注意,此操作可能不会常用于在任何实际任务中,我们只展示如何将任意代码集成到神经网络计算的流程中。

结果输出:

混合搭配各种组合块的方法-嵌套块:

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)

    def forward(self, X):
        return self.linear(self.net(X))

chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)

结果输出:

5.2 参数管理

本节,介绍以下内容:
• 访问参数,用于调试、诊断和可视化;
• 参数初始化;
• 在不同模型组件间共享参数。

例子-具有单隐藏层的多层感知机:

import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

结果输出:

5.2.1 参数访问

当通过Sequential类定义模型时,我们可以通过索引来访问模型的任意层。Sequential类定义模型x相当于1个list。0代表0层,1代表1层,2代表第2层。

print(net[2].state_dict())#state_dict表一个状态,最后输出w,b

结果输出(截图不全不是截图):

OrderedDict([('weight', tensor([[ 0.1793,  0.1265, -0.2669,  0.1742,  0.2569,  0.1682,  0.1716, -0.1260]])), ('bias', tensor([-0.1253]))])

目标参数:

print(type(net[2].bias))#打印bias输出类型<class 'torch.nn.parameter.Parameter'>,,,Parameter可优化的参数
print(net[2].bias)#打印出Parameter
print(net[2].bias.data)#打印出具体数据

结果输出:

参数是复合的对象,包含值、梯度和额外信息。除了值之外,还可以访问每个参数的梯度。在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。

net[2].weight.grad == None

结果输出:

一次性访问所有参数:

通过递归整个树来提取每个子块的参数。下面,将访问第一个全连接层的参数和访问所有层。

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])

结果输出:

('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

通过名字获取参数;

net.state_dict()['2.bias'].data#获取参数2.bias

结果输出:

从嵌套块收集参数:

首先定义一个生成块的函数,然后将这些块组合到更大的块中。

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())#嵌套4个block1
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

结果输出:

为了解内部如何工作,打印出rgnet结构:

print(rgnet)

结果输出:

因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data

结果输出:

5.2.2 参数初始化

深度学习框架提供默认随机初始化,也允许我们创建自定义初始化方法,满足我们通过其他规则实现初始化权重。默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算出的。PyTorch的nn.init模块提供了多种预置初始化方法。

内置初始化:

调用内置的初始化器。将所有权重参数初始化为标准差为0.01的高斯随机变量,且将
偏置参数设置为0。

def init_normal(m):
    if type(m) == nn.Linear:#如果m是一个全连接层
        nn.init.normal_(m.weight, mean=0, std=0.01)#对weight做均值为0,方差为0.01的初始化,_作用表示为替换函数,至今将weight替换掉
        nn.init.zeros_(m.bias)#bias直接赋0
net.apply(init_normal)#对net内所有函数都调用init_normal函数
net[0].weight.data[0], net[0].bias.data[0]

结果输出:

还可以将所有参数初始化为给定的常数,比如初始化为1(算法角度一般不会这样设置)。

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)#设定为1
        nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

输出结果:

对某些块应用不同的初始化方法:

        使用Xavier初始化方法初始化第一个神经网络层,然后将第三个神经网络层初始化为常量值42。

def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)#xavier初始化
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)#初始化为42

net[0].apply(init_xavier)#应用相应初始化操作
net[2].apply(init_42)
print(net[0].weight.data[0])打印出值
print(net[2].weight.data)

结果输出:

自定义初始化:

下面的例子,使用以下的分布为任意权重参数w定义初始化方法:

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])#print(name和param.shape。
        nn.init.uniform_(m.weight, -10, 10)#均匀初始化
        m.weight.data *= m.weight.data.abs() >= 5#它乘以它是不是绝对值大于等于5,不是就置0

net.apply(my_init)
net[0].weight[:2]

结果输出:

直接设置参数:

net[0].weight.data[:] += 1#所有的元素+1
net[0].weight.data[0, 0] = 42#第一个元素为42
net[0].weight.data[0]#输出第一行元素

结果输出:

5.2.3 参数绑定

在多个层间共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)#定义的一个共享层shared
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))#net中第二个隐藏层和第三个隐藏层是shared权重的,不论如何更新net,他的shared层都是一样的
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100#将net中的第一个shared第一个元素改为100,第二个shared也会变
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

结果输出:

5.3 延后初始化

无核心内容记录

5.4 自定义层

5.4.1 不带参数的层

下面的CenteredLayer类要从其输入中减去均值。要构建它,我们只需继承基础层类并实现前向传播功能。

import torch
import torch.nn.functional as F
from torch import nn


class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, X):
        return X - X.mean()#输入减去均值



layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))

结果输出:

将层作为组件合并到更复杂的模型中:

net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
Y = net(torch.rand(4, 8))
Y.mean()#输出y的均值

输出结果:

5.4.2 带参数的层

使用内置函数来创建参数,这些函数提供一些基本的管理功能。比如管理访问、初始化、共享、保存和加载模型参数。这样做的好处之一是:我们不需要为每个自定义层编写自定义的序列化程序。

class MyLinear(nn.Module):#定义一个自己的线性层
    def __init__(self, in_units, units):#参数包含输入维度和输出维度
        super().__init__()
        self.weight = nn.Parameter(torch.randn(in_units, units))#in_units x units的矩阵
        self.bias = nn.Parameter(torch.randn(units,))
    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)

#实例化MyLinear类并访问其模型参数
linear = MyLinear(5, 3)
linear.weight

结果输出:

使用自定义层直接执行前向传播计算:

linear(torch.rand(2, 5))

结果输出:

以使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。:

net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))

结果输出:

5.5 读写文件

5.5.1 加载和保存张量

对于单个张量,我们可以直接调用load和save函数分别读写它们。这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。

#加载和保存张量
import torch
from torch import nn
from torch.nn import functional as F

x = torch.arange(4)
torch.save(x, 'x-file')#保存,写入

x2 = torch.load('x-file')#读取,加载
x2

结果输出:

存储一个张量列表,然后把它们读回内存:

y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)

结果输出:

写入或读取从字符串映射到张量的字典。当我们要读取或写入模型中的所有权重时,很方便。

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

结果输出:

5.5.2 加载和保存模型参数

深度学习框架提供了内置函数来保存和加载整个网络。需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。因为模型本身可以包含任意代码,所以模型本身难以序列化。因此,为了恢复模型,我们需要用代码生成架构,然后从磁盘加载参数。

#多层感知机
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

#模型的参数存储在一个叫做“mlp.params”的文件中
torch.save(net.state_dict(), 'mlp.params')#将mlp中所有的参数state_dict存在params里

为了恢复模型,我们实例化了原始多层感知机模型的一个备份。不需要随机初始化模型参数,而是直接读取文件中存储的参数。

clone = MLP()#声明生成mlp,且参数已经随机初始化了
clone.load_state_dict(torch.load('mlp.params'))#调用load_state_dict加载权重参数
clone.eval()

结果输出:

验证:由于两个实例具有相同的模型参数,在输入相同的X时,两个实例的计算结果应该相同。

Y_clone = clone(X)
Y_clone == Y

 结果输出:

验证成立。

5.6 GPU

GPU部分无核心内容记录。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值