QWQ智能测试:阿里云开源AI模型推理能力测试

玄离199最新的科技补全系列视频:【科技补全26】全球最大盗版视频网站被摧毁;Sora被泄露;网易怒喷腾讯抄袭;新型电脑病毒通过微信群传播;_哔哩哔哩_bilibili 中了解到阿里云开源了具有推理能力的AI模型QWQ,为了测试它的推理能力,我们来找一些题目来测试一下他的推理能力。

我们来到HuggingChat的主页可以看到:QwQ-32B-Preview from Qwen is now available!字样:image-20241130210359854

让我们设置一下 QWQ 的系统初始提示,使其输出语言为中文。

image-20241130211358575

找一些题目对QWQ进行测试(避免多个题目对QWQ的影响,每个题目都打开新的聊天界面提问):

题目一:小学生最爱的找规律

Question:

24,14,26,33,46,( )

Answer:

24,14,26,33,46,( )

这个数列题目看起来有点 tricky,我得好好想想。首先,我来看看相邻数字之间的差是多少。

24 到 14 是减了 10,因为 24 - 14 = 10。

14 到 26 是加了 12,因为 14 + 12 = 26。

26 到 33 是加了 7,因为 26 + 7 = 33。

33 到 46 是加了 13,因为 33 + 13 = 46。

嗯,看起来加减的幅度没有明显的规律,比如等差或者等比什么的。 maybe 我应该看看这些数字有没有其他的共同点,比如都是偶数、奇数,或者能被某个数整除。

看看这些数字:

24 是偶数,能被 2、3、4、6、8、12 整除。

14 是偶数,能被 2、7 整除。

26 是偶数,能被 2、13 整除。

33 是奇数,能被 3、11 整除。

46 是偶数,能被 2、23 整除。

嗯,似乎没有什么共同的因子。也许这不是通过公因数来寻找规律。

此处省略一万多字,是真的省略掉了一万多字,可以看下面QWQ尝试用到的解题方法。

从内容和长度上可以看到是具备一定的推理能力的,QWQ使用了下面的这些方法来尝试解题:

1. 基本数学运算和规律:

  • 计算相邻数字之间的差、差的差(二级差)、三级差,寻找等差、等比数列规律。
  • 检查数字的奇偶性、约数、倍数、质因数分解。
  • 计算数字的和、积、各位数字之和、各位数字之积。
  • 尝试使用位置信息寻找规律,例如数字与位置的和、差、积、商。
  • 探索数字与平方数、立方数的关系。

2. 高级数学方法:

  • 递推公式:尝试寻找每一项与前几项之间的关系。
  • 多项式拟合:假设序列可以用多项式函数表示,尝试拟合函数。
  • 序列拆分:将序列拆分成奇数项和偶数项分别寻找规律。
  • 指数、对数、三角函数:尝试使用这些函数寻找规律。
  • 位运算:分析数字的二进制表示,寻找位操作的模式。
  • 微积分:考虑积分、微分运算的可能性。
  • 傅里叶变换:尝试分析序列的频域特性。
  • 矩阵运算、特征值、特征向量。
  • 生成函数。

3. 特殊数列和数学概念:

  • 查找已知数列:尝试在 OEIS 数据库中查找类似的序列(虽然 AI 无法实际访问)。
  • 斐波那契数列、平方数、三角数等特殊数列。
  • 数学常数:π、e 等。
  • 多边形数。
  • 分形图案。

4. 其他方法:

  • 反转序列。
  • 移动平均法。
  • 进制转换:将数字转换为其他进制。
  • 罗马数字、中文数字。
  • 字母转换:将数字转换为字母。
  • 化学元素周期表。
  • 图形、图像。
  • 物理、化学、生物、天文、地理等学科知识。
  • 音乐理论、声音波形。
  • 密码学、编码方式。
  • 计算机科学:算法、数据结构、位运算。
  • 统计方法:均值、中位数、标准差、概率分布。
  • 机器学习:尝试训练模型预测(但无法实际操作)。
  • 时间序列分析。
  • 哲学、宗教、神话、历史、文化、艺术等领域。

但是很遗憾,没有解出来理想的答案,下面我来公布参考答案:

img

我们来给QWQ一点提示(24/2+14=26,14/2+26=33)看看会有什么发生:

哦,谢谢你的提示!让我试着理解一下。

你说的是24除以2加上14等于26,14除以2加上26等于33。让我验证一下:

首先,24 ÷ 2 = 12,然后12 + 14 = 26。没错。

接着,14 ÷ 2 = 7,然后7 + 26 = 33。也是对的。

那么,按照这个规律,接下来应该是26 ÷ 2 + 33。让我们算一下:

26 ÷ 2 = 13,13 + 33 = 46。正好是序列中的下一个数。

再往下,33 ÷ 2 + 46。33 ÷ 2 = 16.5,16.5 + 46 = 62.5。

所以,如果这个规律成立,第六个数字应该是62.5。

但是,我注意到序列中的数字都是整数,突然出现小数有点不太协调。也许需要再确认一下。

或者,也许在计算时应该采用整数除法,也就是忽略小数部分。

比如说,33 ÷ 2 = 16.5,但如果采用整数除法,33 ÷ 2 = 16(向下取整)。

那么,16 + 46 = 62。

这样的话,第六个数字是62。

再检查一下之前的步骤,看看是否一致。

第一项24,第二项14。

按照规律,24 ÷ 2 + 14 = 12 + 14 = 26(第三项)。

14 ÷ 2 + 26 = 7 + 26 = 33(第四项)。

26 ÷ 2 + 33 = 13 + 33 = 46(第五项)。

33 ÷ 2 + 46 = 16.5 + 46 = 62.5。

如果采用整数除法,33 ÷ 2 = 16,然后16 + 46 = 62。

这样,第六项应该是62。

或者,如果保持小数,就是62.5。

也许出题者的意图是包括小数,所以62.5是正确的答案。

不过,考虑到前面的数字都是整数,也许应该取整到62。

总之,根据这个规律,第六项应该是62或者62.5。

最终答案

62.5 \boxed{62.5} 62.5

在给予提示 (24/2+14=26,14/2+26=33) 后,QWQ迅速理解并推导出正确答案62.5,并展现了严谨的思维过程,考虑到小数与整数的差异,以及出题人的意图。

问题二:初高中水平物理题

Question:

用一根绳子吊住一根胡萝卜,达到平衡,胡萝卜头尾在同一水平。这时候沿着绳子切开胡萝卜为两份,哪边更重?

Answer:

用一根绳子吊住一根胡萝卜,使得胡萝卜的头部和尾部在同一水平线上。然后沿着绳子的方向将胡萝卜切成两份,问哪一边会更重?

首先,我需要理解这个场景。有一根胡萝卜,用绳子吊着,而且胡萝卜的头部和尾部在同一水平线上。这意味着胡萝卜是水平悬挂的,绳子的作用点在胡萝卜的重心位置,因为只有当绳子通过重心时,物体才能保持平衡,不会旋转。

所以,绳子应该是绑在胡萝卜的重心处。现在,如果我沿着绳子的方向将胡萝卜切成两份,也就是说,切面通过绳子的位置,也就是重心的位置。

在物理学中,重心是物体各部分重力合力的作用点。对于均匀密度的物体,重心就是几何中心。但对于胡萝卜来说,它的密度可能不均匀,形状也不是规则的,所以重心可能不在中间。

但是,根据题意,胡萝卜是水平悬挂的,且头部和尾部在同一水平线上,这意味着绳子确实是在重心位置悬挂的。

现在,如果沿着绳子方向切开胡萝卜,也就是说,切面通过重心。

那么,切开后形成的两部分,每部分的重量应该是一样的,因为重心是使物体平衡的点,两边的重量相等。

所以,理论上,两边应该一样重。

但是,我需要考虑一下胡萝卜的形状和密度分布。胡萝卜通常是一端粗一端细,密度可能不是均匀的。假如胡萝卜的头部较粗,密度较大,那么重心可能偏向下部。

但是,题目说胡萝卜是水平悬挂的,头部和尾部在同一水平线上,这意味着绳子确实是在重心位置。

所以,即使胡萝卜的密度不均匀,只要悬挂时头部和尾部在同一水平线上,就说明绳子是在重心位置。

因此,沿着绳子切开,两边的重量应该相等。

也许题目想考察的是对重心的理解和平衡的条件。

总之,我的答案是两边一样重。

最终答案

$\boxed{\text{两边一样重}} $

在这个题目中QWQ先后进行了理解题意和场景重心概念的应用密度分布的考虑水平悬挂条件的分析切分后的重量分析,最后得出结论,看起来很有条理,但是很遗憾,答案好像并不理想。

我们来公布参考答案:

568677d4ade8dd5c57b2ad4b4a08929

我将这句话:胡萝卜可不可以看成是一个杠杆,此时头部较粗因此力臂较端,而尾部较细因此力臂较长。那么当这个杠杆平衡时…给QWQ后是这样:

可以将胡萝卜看作一个杠杆,绳子的悬挂点就是支点。杠杆平衡的条件是顺时针力矩等于逆时针力矩。

假设胡萝卜的头部较粗,密度较大,那么头部的质量较大,但力臂较短(因为靠近支点)。尾部较细,质量较小,但力臂较长。

根据杠杆平衡条件:

$ m_1 \times g \times l_1 = m_2 \times g \times l_2 $

其中,$\ m_1 \ 是头部的质量, 是头部的质量, 是头部的质量, l_1 是头部到支点的距离; 是头部到支点的距离; 是头部到支点的距离;m_2 $ 是尾部的质量,$l_2 $是尾部到支点的距离。

由于 $ g $是重力加速度,两边都一样,可以消去。

所以,$ m_1 \times l_1 = m_2 \times l_2 $

现在,如果沿着绳子切开,也就是在支点处切开,那么每一部分的重量应该是相等的,因为支点已经在重心处,保证了两边的力矩平衡。

所以,两边的重量应该相等。

也许我可以这样思考:如果两边重量不相等,那么杠杆就会旋转,直到找到新的平衡点。但根据题意,胡萝卜已经是平衡的,头部和尾部在同一水平线上,说明已经达到了平衡状态,绳子在重心处。

因此,沿着绳子切开,两边重量应该相等。

最终答案

$\ \boxed{\text{两边一样重}} $

好家伙,这是卧龙对凤雏,还是针尖对麦芒呢。

你的答案,或者你感觉标准答案是什么呢?

问题三:简单的逻辑链

Question:

如果所有的玫瑰都是花,同时,又由于有些花很快就会凋谢,我们能否得出结论说有些玫瑰很快就会凋谢?请逐步解释你的推理

Answer:

这个问题是一个逻辑推理题,涉及范畴之间的关系。让我们一步一步地来分析。

首先,题目给出两个前提:

  1. 所有的玫瑰都是花。

  2. 有些花很快就会凋谢。

问:能否得出结论“有些玫瑰很快就会凋谢”?

要解答这个问题,我们需要理解这些陈述在逻辑上的关系。

第一个前提是“所有的玫瑰都是花。” 这是一个全称肯定命题,表示玫瑰的集合是花的集合的一个子集。换句话说,玫瑰属于花的一种。

第二个前提是“有些花很快就会凋谢。” 这是一个特称肯定命题,表示在花的集合中,至少有一些成员具有“很快就会凋谢”的属性。

现在,我们要看是否能从这两个前提推导出“有些玫瑰很快就会凋谢。”

为了更清楚地理解这一点,我们可以使用逻辑符号来表示这些陈述。

设:

  • R:玫瑰

  • F:花

  • D:很快就会凋谢

那么,前提可以表示为:

  1. ∀x(Rx → Fx) (所有玫瑰都是花)

  2. ∃x(Fx ∧ Dx) (有些花很快就会凋谢)

我们要证明的是:∃x(Rx ∧ Dx) (有些玫瑰很快就会凋谢)

现在,我们来看是否可以从前提1和前提2推导出结论。

首先,前提1说所有玫瑰都是花,即如果某个东西是玫瑰,那么它一定是花。

前提2说有些花很快就会凋谢,即至少有一朵花具有很快凋谢的属性。

但是,需要注意的是,前提2只是说“有些”花会很快凋谢,并没有说明这些花是否包括玫瑰。

因此,不能直接得出有些玫瑰会很快凋谢的结论。

举个例子来说明这一点。

假设花的集合包括玫瑰、百合、菊花等。

根据前提1,所有的玫瑰都是花,所以玫瑰是在花的集合中的。

前提2说有些花很快就会凋谢,可能是百合和菊花中的一些会很快凋谢,但并不一定包括玫瑰。

如果玫瑰本身不会很快凋谢,那么即使有些花会很快凋谢,也不影响玫瑰的情况。

因此,从前提1和前提2,我们不能必然得出“有些玫瑰很快就会凋谢”的结论。

在逻辑上,这是一个关于范畴包含和交叉的问题。

具体来说,这是逻辑学中关于直言命题的推理问题。

直言命题包括四种基本形式:

  • 全称肯定命题(A命题):所有S是P。

  • 全称否定命题(E命题):所有S不是P。

  • 特称肯定命题(I命题):有些S是P。

  • 特称否定命题(O命题):有些S不是P。

在这个问题中,前提1是A命题(所有玫瑰是花),前提2是I命题(有些花会很快凋谢),结论是I命题(有些玫瑰会很快凋谢)。

在传统的逻辑平方中,从A和I的前提,不能直接推出I式的结论。

具体来说,A命题表示S(玫瑰)包含于P(花),I命题表示有些P具有某些属性。

但是,不能由此断定有些S具有那些属性,因为那些属性可能只适用于P中不包含S的部分。

因此,正确的回答是,不能从 given的前提得出“有些玫瑰很快就会凋谢”的结论。

Final Answer

$\boxed{\text{不能得出结论说有些玫瑰很快就会凋谢。}} $

这个推理过程看起来没什么问题。

问题四:开放性问题

Question:

请简要介绍目前主流的大模型体系有哪些?

Answer:

目前,大模型在人工智能领域扮演着重要角色,它们被广泛应用于自然语言处理、计算机视觉、语音识别等多个领域。以下是一些主流的大模型体系:

  1. Transformer 模型

    • Transformer 是一种基于自注意力机制的神经网络架构,由 Vaswani 等人在2017年的论文《Attention is All You Need》中提出。它在机器翻译任务上取得了显著的成功,并迅速成为序列到序列学习的标准架构。
    • Transformer 模型的一个重要变体是 BERT(Bidirectional Encoder Representations from Transformers),由谷歌在2018年发布。BERT 通过双向训练和掩码语言模型的目标,极大地提高了自然语言理解任务的性能。
    • 另一个著名的 Transformer 模型是 GPT(Generative Pre-trained Transformer)系列,如 GPT-3,由 OpenAI 开发。GPT 模型在生成文本、回答问题、创作故事等方面表现出色。
  2. 卷积神经网络(CNN)

    • CNN 在计算机视觉领域取得了巨大的成功,特别是在图像分类、目标检测和语义分割等任务上。经典的 CNN 模型包括 AlexNet、VGG、ResNet 和 Inception 等。
    • 近年来,一些新的 CNN 架构如 EfficientNet 和 RegNet 也被提出,旨在提高模型的效率和性能。
  3. 循环神经网络(RNN)及其变体

    • RNN 是一种用于处理序列数据的神经网络,如时间序列数据和自然语言。传统的 RNN 存在梯度消失和梯度爆炸的问题,限制了其在长序列上的表现。
    • 为了解决这些问题,长短时记忆网络(LSTM)和门控循环单元(GRU)被引入,它们能够更好地捕捉长程依赖关系。
  4. 图形神经网络(GNN)

    • GNN 是一种用于图结构数据的神经网络,可以处理节点特征、边特征和图的整体结构信息。GNN 在社交网络分析、推荐系统、化学分子预测等领域有广泛应用。
    • 常见的 GNN 模型包括 Graph Convolutional Networks (GCN)、GraphSAGE 和 Graph Attention Networks (GAT) 等。
  5. 强化学习模型

    • 强化学习是一种通过智能体与环境交互来学习最优行为策略的方法。深度强化学习结合了强化学习和深度学习的技术,使得 agents 能够在高维状态空间中学习复杂的决策策略。
    • AlphaGo 和 AlphaZero 是深度强化学习的著名应用,它们在围棋等游戏中取得了超越人类的水平。
  6. 生成对抗网络(GAN)

    • GAN 由生成器和判别器两个神经网络组成,通过对抗训练的方式学习数据分布,从而生成新的样本。GAN 在图像生成、风格迁移、数据增强等方面有着广泛的应用。

这些大模型体系各自有不同的优势和适用场景,研究人员和工程师根据具体任务的需求选择合适的模型架构。随着人工智能技术的不断发展,新的模型体系和架构也在不断涌现,推动着各个领域的进步。

Genspark Autopilot Agent给出的参考答案:目前主流的大模型体系主要包括:GPT系列、BERT、XLNet、RoBERTa、T5。

当我问到为什么不是这些时,QWQ是这样回答的:

您提到的GPT系列、BERT、XLNet、RoBERTa、T5等都是基于Transformer架构的预训练语言模型,它们在自然语言处理领域取得了显著的成功。这些模型之所以被称为“大模型”,是因为它们通常具有大量的参数,经过大规模的数据训练,从而能够捕捉到丰富的语言结构和语义信息。

以下是这些模型的一些特点:

  • GPT系列:GPT是由OpenAI开发的生成式预训练变换器模型系列,包括GPT、GPT-2和GPT-3。这些模型在多种自然语言处理任务上表现出色,尤其是文本生成、问答和摘要等任务。

  • BERT:BERT是Google开发的双向编码器表示从变压器中获得,是一种预训练的语言模型,通过masked language modeling和next sentence prediction任务进行训练。BERT在各种下游任务上取得了state-of-the-art的结果,如问答、命名实体识别和情感分析等。

  • XLNet:XLNet是Google提出的另一个预训练语言模型,它采用了置换语言建模(permutation language modeling)的方法,结合了自动回归模型和自编码模型的优势,旨在克服BERT的一些局限性。

  • RoBERTa:RoBERTa是Facebook AI Research开发的模型,它是对BERT的扩展和改进,通过更大的数据集、更长的序列长度和更多的训练步骤来进一步提升性能。

  • T5:T5是Google的另一种预训练语言模型,它将各种自然语言处理任务统一为文本到文本的格式,并使用Transformer架构进行训练。

这些模型之所以流行,是因为它们在多个自然语言处理任务上取得了优异的表现,并且可以通过微调适应不同的应用场景。然而,值得注意的是,尽管这些模型非常强大,但它们也存在一些挑战,比如计算资源需求高、训练时间长以及可能存在的偏见和伦理问题等。因此,在实际应用中需要谨慎考虑这些问题。

嘶,不懂,但感觉QWQ说的更有道理哈。

问题五:逻辑命题的转换

Question:

我们永远不能有一个经验方法应用到所有事情上的逆反命题是不是总有一些经验方法可以用在多件事情上,如果不是,请告诉我他的逆反命题。

Answer:

好的,我来尝试理解这个问题。首先,原命题是:“我们永远不能有一个经验方法应用到所有事情上。” 我需要找出这个命题的反命题、逆命题,并且看看逆反命题是什么。

首先,明确一下逻辑中的基本概念:

  1. 原命题:如果P,则Q。(If P, then Q.)

  2. 反命题:非P,则非Q。(If not P, then not Q.)

  3. 逆命题:如果Q,则P。(If Q, then P.)

  4. 逆反命题:非Q,则非P。(If not Q, then not P.)

但是,我需要将这些概念应用到给定的命题上。首先,我需要把原命题转化为if-then的形式,这样更容易处理。

原命题:“我们永远不能有一个经验方法应用到所有事情上。”

这句话可以理解为:“不存在一个经验方法,它可以应用到所有事情上。” 或者说,“对于所有的经验方法,都存在某些事情它们不适用。”

为了使其更符合if-then形式,我可以把它重述为:

“如果有一个经验方法,那么它不能应用到所有事情上。”

换句话说:

P:有一个经验方法。

Q:它不能应用到所有事情上。

所以,原命题是:如果P,则Q。

现在,我可以根据这个来找出反命题、逆命题和逆反命题。

  1. 反命题:如果非P,则非Q。

    非P:没有经验方法。

    非Q:它可以应用到所有事情上。

    所以,反命题是:“如果没有经验方法,那么它可以应用到所有事情上。”

    这句话听起来有点奇怪,因为如果没有经验方法,就谈不上应用不应用到所有事情上。可能需要再思考一下。

  2. 逆命题:如果Q,则P。

    Q:一个经验方法不能应用到所有事情上。

    P:有一个经验方法。

    所以,逆命题是:“如果一个经验方法不能应用到所有事情上,那么有一个经验方法。”

    这个似乎也是有点模糊,因为如果有一个经验方法不能应用到所有事情上,那么显然存在至少一个经验方法。

  3. 逆反命题:如果非Q,则非P。

    非Q:一个经验方法可以应用到所有事情上。

    非P:没有经验方法。

    所以,逆反命题是:“如果有一个经验方法可以应用到所有事情上,那么没有经验方法。”

    这看起来自相矛盾,因为如果有一个经验方法可以应用到所有事情上,那么显然有经验方法存在,但这与“没有经验方法”相冲突。

也许我最初对原命题的分解有问题。让我再试一次。

原命题是:“我们永远不能有一个经验方法应用到所有事情上。”

这可以理解为:“不存在这样一个经验方法,它能够应用到所有事情上。”

在逻辑上,这是说:“对于所有经验方法,都存在某些事情,它们不适用。” —— 即 ∀M (经验方法 M, ∃S (事情 S, M 不适用到 S))。

如果我要将其转化为if-then形式,可能需要更抽象一些。

假设 P:某事物是经验方法。

Q:它不能应用到所有事情上。

那么原命题是:对于所有 P,Q。

也就是,所有经验方法都不能应用到所有事情上。

在这种情况下,反命题、逆命题和逆反命题的概念可能不太直接适用,因为原命题是一个全称命题。

也许我应该考虑否定来找到反命题。

原命题:∀M (P(M) → Q(M)),其中 P(M) 是 M 是经验方法,Q(M) 是 M 不能应用到所有事情上。

反命题应该是 ¬∀M (P(M) → Q(M)),即 ∃M (P(M) ∧ ¬Q(M)),意思是存在某个经验方法,它可以应用到所有事情上。

所以,反命题是:“存在一个经验方法,它可以应用到所有事情上。”

现在,逆命题通常是对if-then语句的前后件进行交换,但在这里,由于原命题是全称量化的,可能需要小心处理。

但如果坚持使用if-then形式,原命题是如果某事物是经验方法,则它不能应用到所有事情上。

逆命题就是如果某事物不能应用到所有事情上,则它是经验方法。

这可能不是特别有意义,因为有很多事物不能应用到所有事情上,但它们不一定是有经验的方法。

逆反命题是如果某事物可以应用到所有事情上,则它不是经验方法。

这与之前得到的反命题相关,因为反命题是存在一个经验方法可以应用到所有事情上,而逆反命题是说如果一个事物可以应用到所有事情上,那么它不是经验方法。

看来这些命题之间存在一定的逻辑关系,但可能需要更仔细地定义术语和上下文。

总之,原命题是“我们永远不能有一个经验方法应用到所有事情上”,其反命题是“存在一个经验方法,它可以应用到所有事情上”,逆命题是“如果一个事物不能应用到所有事情上,那么它是经验方法”,逆反命题是“如果一个事物可以应用到所有事情上,那么它不是经验方法”。

希望这样解释有所帮助。

总结:

  • 原命题:我们永远不能有一个经验方法应用到所有事情上。

  • 反命题:存在一个经验方法,它可以应用到所有事情上。

  • 逆命题:如果一个事物不能应用到所有事情上,那么它是经验方法。

  • 逆反命题:如果一个事物可以应用到所有事情上,那么它不是经验方法。

注意:在逻辑上,原命题与其逆反命题是等价的,而反命题与其逆命题也是等价的。但是,根据上述分析,这些命题的含义可能并不完全直观,需要根据具体的上下文来解读。

这个问题是很早听博客时候想到的,至于参考答案呢,就没有了。

由这五个题目可以看出来:

QWQ在逻辑推理、数学分析和知识储备方面展现出一定的实力,尤其在逻辑链条清晰的题目中表现挺出色。但在处理复杂问题、运用物理知识和理解某些特定领域概念时,仍有提升空间。 QWQ的推理能力还有待进一步的测试和完善,但其潜力是不容忽视的。 本次测试也暴露出QWQ在某些特定类型的题目上存在明显的短板。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值