在深度学习与流体力学融合的背景下,科研边界不断拓展,创新成果层出不穷。从物理模型融合到复杂流动模拟,从数据驱动研究到流场智能分析,深度学习正以前所未有的力量重塑流体力学领域。
目前在 Nature和Science杂志上发表的深度学习驱动的流体力学方面的论文主要集中以下几个方面:
1、: 流体力学方程的求解:利用深度学习模型来求解流体力学的基本方程,如纳维-斯托克斯方程。
2、 湍流模拟:应用深度学习技术来改进湍流模型,提高湍流模拟的准确性和效率。
3、流场重建与超分辨率: 流场重建与超分辨率:使用深度学习算法对流场数据进行超分辨率重建,提升现有数据的分辨率,以更精确地模拟和分析流体流动。
4、 流动特征识别与分类:利用深度学习模型来识别和分类流体流动中的关键特征。
5、流动控制与优化 流动控制与优化: :应用深度学习进行流动控制策略的优化,以提高流体机械的性能。
6、 计算流体动力学(CFD)与机器学习的结合 )与机器学习的结合: :将深度学习集成到传统的 CFD 软件中,以提高计算效率和精度。
7、物理约束神经网络 物理约束神经网络: :开发满足物理守恒定律的神经网络模型,如保辛神经网络。
8、激波和边界层过渡 激波和边界层过渡: :利用深度学习预测和分析流体中的激波以及边界层的过渡现象。
9、实验数据与模拟数据的融合 实验数据与模拟数据的融合: :使用深度学习来提高流体力学模型的预测能力。
10、新兴技术与流体力学的交叉 新兴技术与流体力学的交叉: :如神经辐射场流场重构等新兴技术在流体力学中的应用。
适用于流体力学相关领域的科研人员,力学、航空航天科学与工程、工业通用技术及设备、动力工程、船舶工业、建筑科学与工程、石油天然气工业、机械工业、汽车工业、环境科学与资源利用等领域的工程师,工业自动化、机器人、智能制造等相关行业从业者,跨领域研究人员。
“ 基于 Fluent 和深度学习算法驱动的流体力学计算与应用 ”
机器学习与流体力学入门
一、 流 体力学基础理论与编程实战
1、流体力学的发展概述
2、不可压缩流体力学的基本方程
3、湍流理论与湍流模型简介
4、傅里叶变换和流体的尺度分析
5、伪谱法求解不可压缩流体力学方程
案例实践:Python编程伪谱法求解NS方程 (案例数据与代码提供给学员)
二、 Fluent 简介与案例实战
1、Fluent软件概述:软件功能和特点、Fluent在流体力学中的应用
2、网格划分与计算流程:网格划分技术、Fluent计算流程和步骤
3、基于Fluent软件的稳态与非稳态流体计算
4、两相流的基本理论和求解技术
5、基于Fluent软件动网格技术的两相流求解
案例实践:方腔流、圆柱绕流、小球入水的Fluent求解流程
人工智能深度学习模型与流场超分辨技术
三、人工智能基础理论与优化方法
1、人工智能的基本概念
2、最优化理论算法: a) 最优问题的定义 b) 优化算法介绍
3、机器学习算法简介:支持向量机等机器学习算法
4、深度学习的基本概念及实战
案例实践: Python 实现基础网络架构
1 1 、梯度下降算法的Python实现 (案例数据代码提供给学员)
2 2 、二阶函数极值问题的求解 (案例数据代码提供给学员)
四、 深度学习模型在流场超分辨中的应用
1、超分辨的基本概念和应用场景
2、经典超分辨算法
a) 基于局部自适应对偶性先验的最优化方法 b) 超分辨算法的性能评估
3、分别基于卷积神经网络(CNN)和生成对抗网络(GAN)的流场超分辨案例与实战
案例实践: Python 编程实现流场超分辨,不同模型超分辨的优势和劣势分析
1、经典模型实现流体超分辨 (案例数据代码提供给学员)
2 2 、深度学习模型实现流体的超分辨
深度学习模型力学新范式
五、 深度学习模型的力学 新范式 及 ODE 求解实战
1、深度学习模型的动力学解释
2、残差神经网络(ResNet)与神经常微分方程(NeuralODE)
3、Neural ODE与与流体力学方程求解
4、循环神经网络(RNN)与流体动力学时序预测
a) RNN的基本概念 b) RNN与隐式算法的对应关系
c) 时间序列预测在流体动力学中的应用
5、卷积神经网络(CNN)与流场特征提取
a) CNN的基本原理 b) 卷积与微分算子的对应关系
b) CNN如何用于流场图像分析,如涡识别
案例实践:利用 Neural ODE 求解特定流体 (多体问题)
深度学习模型在流体力学中的应用
六 、神经网络在湍流模拟中的应用
1、物理信息神经网络(PINN)
2、流动的拉格朗日结构提取与相互作用
a) 基于图片的涡旋特征提取
b) 基于图神经网络(GNN)的神经网络算法
3、 嵌入物理信息的神经网络
a) 基于几何对称性改造神经网络 b) 基于拉格朗日结构和几何对称性的神经网络
案例实践: Python 编程湍流的拉格朗日方法
1、流体力学的拉格朗日算法 (案例数据代码提供给学员)
2、流体力学的拉格朗日神经网络 (案例数据代码提供给学员)
七、 神经网络在空气动力学中的应用
1、可压缩流体力学求解的数值方法和机器学习方法
a) 可压缩流体力学的数值方法
b) 神经网络在激波求解中的应用
2、高精度格式在神经网络中的实现
a) 高精度格式的主要思想和局限性
b) 基于高精度格式的机器学习算法
3、深度强化学习(Deep Reinforcement Learning)的理论与算法
4、可压缩激波求解案例与编程实战
案例实践: Python 编程求解可压缩流体力学方程
1、高精度格式求解可压缩流体力学方程 (案例数据代码提供给学员)
2 2 、深度学习模型求解可压缩流体力学方程
流动可视化与新兴技术
八、 流动生成与后处理
1、BackTrace实现流场高精度可视化
2、Tecplot可视化展示标量场、向量场等
3、Houdini展示渲染高保真流场
4、基于神经辐射场(NeRF)的流场重构技术
5、基于扩散模型(Diffusion Model)的流动生成
案例实践: Python 编程实现反向追踪算法 (案例数据代码提供给学员)